Suppr超能文献

用于锂离子电池应用的天然生物聚合物基电解质的环境可持续性

Environmental Sustainability of Natural Biopolymer-Based Electrolytes for Lithium Ion Battery Applications.

作者信息

Huang Jing, Wang Sijun, Chen Junqing, Chen Chaoji, Lizundia Erlantz

机构信息

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.

出版信息

Adv Mater. 2025 Jun;37(22):e2416733. doi: 10.1002/adma.202416733. Epub 2025 Jan 5.

Abstract

Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes. The challenge is addressed by identifying the most promising biopolymer electrolytes for LIBs, measuring ionic conductivities and electrochemical stability windows, and quantifying environmental impacts using life cycle assessment. The environmental impacts of the cost to isolate cellulose derivatives, nanocelluloses, chitin/nanochitin, chitosan, lignin, agar, and silk are reported for climate change, acidification, freshwater ecotoxicity, marine eutrophication, human toxicity, and water use. Material criticality, circularity index, and material circularity indicator, emerging impact categories are prioritized to help integrate biopolymers into circular and sustainable materials. The electrochemical properties and environmental impacts of natural biopolymer membrane-liquid electrolyte pairs, gel electrolytes, and solid electrolytes are quantified and benchmarked against conventional fossil-based electrolytes, providing consistent and comparable electrochemical properties of the most relevant biopolymer electrolytes fabricated so far. This study highlights the significant functional and environmental benefits of biopolymer electrolytes and identifies the most electrochemically competitive biopolymer electrolytes in LIBs.

摘要

基于生物聚合物的电解质可以克服锂离子电池(LIBs)目前的性能限制。生物聚合物能够实现具有高离子电导率和宽电化学稳定窗口的电解质。虽然天然材料的生物基特性被认为是应对当前环境可持续性挑战的固有优势,但仍需要进一步研究来量化和比较它们作为电解质的环境影响。通过识别最有前途的用于LIBs的生物聚合物电解质、测量离子电导率和电化学稳定窗口以及使用生命周期评估来量化环境影响,解决了这一挑战。报告了分离纤维素衍生物、纳米纤维素、几丁质/纳米几丁质、壳聚糖、木质素、琼脂和丝绸的成本对气候变化、酸化、淡水生态毒性、海洋富营养化、人体毒性和水资源利用的环境影响。对材料关键性、循环指数和材料循环指标等新兴影响类别进行了优先排序,以帮助将生物聚合物纳入循环和可持续材料中。对天然生物聚合物膜-液体电解质对、凝胶电解质和固体电解质的电化学性能和环境影响进行了量化,并与传统的化石基电解质进行了基准比较,提供了迄今为止制备的最相关生物聚合物电解质一致且可比的电化学性能。这项研究突出了生物聚合物电解质显著的功能和环境效益,并确定了LIBs中最具电化学竞争力的生物聚合物电解质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2327/12138847/1e7aa1261847/ADMA-37-2416733-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验