Suppr超能文献

用于在钠离子电池中稳定钠沉积的基于分层纳米纤维素的凝胶聚合物电解质。

Hierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries.

机构信息

Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland.

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.

出版信息

Small. 2022 Oct;18(43):e2107183. doi: 10.1002/smll.202107183. Epub 2022 Feb 27.

Abstract

Sodium ion batteries (NIBs) based on earth-abundant materials offer efficient, safe, and environmentally sustainable solutions for a decarbonized society. However, to compete with mature energy storage technologies such as lithium ion batteries, further progress is needed, particularly regarding the energy density and operational lifetime. Considering these aspects as well as a circular economy perspective, the authors use biodegradable cellulose nanoparticles for the preparation of a gel polymer electrolyte that offers a high liquid electrolyte uptake of 2985%, an ionic conductivity of 2.32 mS cm , and a Na transference number of 0.637. A balanced ratio of mechanically rigid cellulose nanocrystals and flexible cellulose nanofibers results in a mesoporous hierarchical structure that ensures close contact with metallic Na. This architecture offers stable Na plating/stripping at current densities up to ±500 µA cm , outperforming conventional fossil-based NIBs containing separator-liquid electrolytes. Paired with an environmentally sustainable and economically attractive Na Fe (SO ) cathode, the battery reaches an energy density of 240 Wh kg , delivering 69.7 mAh g after 50 cycles at a rate of 1C. In comparison, Celgard in liquid electrolyte delivers only 0.6 mAh g at C/4. Such gel polymer electrolytes may open up new opportunities for sustainable energy storage systems beyond lithium ion batteries.

摘要

钠离子电池(NIBs)基于丰富的地球材料,为去碳化社会提供了高效、安全和环境可持续的解决方案。然而,为了与成熟的储能技术(如锂离子电池)竞争,还需要进一步的进展,特别是在能量密度和工作寿命方面。考虑到这些方面以及循环经济的角度,作者使用可生物降解的纤维素纳米颗粒制备了一种凝胶聚合物电解质,其具有 2985%的高液体电解质吸收率、2.32 mS cm 的离子电导率和 0.637 的 Na 迁移数。刚性纤维素纳米晶体和柔性纤维素纳米纤维的平衡比例导致形成了介孔分级结构,确保与金属 Na 紧密接触。这种结构可以在高达 ±500 µA cm 的电流密度下实现稳定的 Na 电镀/剥离,优于含有分离器-液体电解质的传统基于化石的 NIBs。与环境可持续且经济上有吸引力的 NaFe(SO )阴极配对后,电池达到 240 Wh kg 的能量密度,在 1C 的倍率下经过 50 次循环后可提供 69.7 mAh g 的容量。相比之下,Celgard 在液体电解质中的容量仅为 0.6 mAh g 在 C/4。这种凝胶聚合物电解质可能为超越锂离子电池的可持续储能系统开辟新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验