Suppr超能文献

基于 SonoVue 超声造影的列线图鉴别诊断肝内胆管细胞癌和低分化肝细胞癌:一项前瞻性多中心研究。

Nomogram based on Sonazoid contrast-enhanced ultrasound to differentiate intrahepatic cholangiocarcinoma and poorly differentiated hepatocellular carcinoma: a prospective multicenter study.

机构信息

Department of Interventional Ultrasound, First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.

Chinese PLA Medical School, Beijing, 100853, China.

出版信息

Abdom Radiol (NY). 2023 Oct;48(10):3101-3113. doi: 10.1007/s00261-023-03993-z. Epub 2023 Jul 12.

Abstract

OBJECTIVES

The aim of this study was to develop a predictive model based on Sonazoid contrast-enhanced ultrasound (SCEUS) and clinical features to discriminate poorly differentiated hepatocellular carcinoma (P-HCC) from intrahepatic cholangiocarcinoma (ICC).

PATIENTS AND METHOD

Forty-one ICC and forty-nine P-HCC patients were enrolled in this study. The CEUS LI-RADS category was assigned according to CEUS LI-RADS version 2017. Based on SCEUS and clinical features, a predicated model was established. Multivariate logistic regression analysis and LASSO logistic regression were used to identify the most valuable features, 400 times repeated 3-fold cross-validation was performed on the nomogram model and the model performance was determined by its discrimination, calibration, and clinical usefulness.

RESULTS

Multivariate logistic regression and LASSO logistic regression indicated that age (> 51 y), viral hepatitis (No), AFP level (≤  20 µg/L), washout time (≤  45 s), and enhancement level in the Kupffer phase (Defect) were valuable predictors related to ICC. The area under the receiver operating characteristic (AUC) of the nomogram was 0.930 (95% CI: 0.856-0.973), much higher than the subjective assessment by the sonographers and CEUS LI-RADS categories. The calibration curve showed that the predicted incidence was more consistent with the actual incidence of ICC, and 400 times repeated 3-fold cross-validation revealed good discrimination with a mean AUC of 0.851. Decision curve analysis showed that the nomogram could increase the net benefit for patients.

CONCLUSIONS

The nomogram based on SCEUS and clinical features can effectively differentiate P-HCC from ICC.

摘要

目的

本研究旨在建立一种基于声诺维造影超声(SCEUS)和临床特征的预测模型,以区分低分化肝细胞癌(P-HCC)和肝内胆管细胞癌(ICC)。

患者与方法

本研究纳入了 41 例 ICC 患者和 49 例 P-HCC 患者。CEUS LI-RADS 类别根据 2017 年版 CEUS LI-RADS 进行分配。基于 SCEUS 和临床特征建立预测模型。采用多变量逻辑回归分析和 LASSO 逻辑回归识别最有价值的特征,对列线图模型进行 400 次重复 3 折交叉验证,通过其判别能力、校准能力和临床实用性来确定模型性能。

结果

多变量逻辑回归和 LASSO 逻辑回归表明,年龄(>51 岁)、病毒性肝炎(否)、AFP 水平(≤20 µg/L)、洗脱时间(≤45 s)和门脉期增强水平(缺损)是与 ICC 相关的有价值的预测指标。列线图的受试者工作特征曲线下面积(AUC)为 0.930(95%CI:0.856-0.973),明显高于超声医师的主观评估和 CEUS LI-RADS 类别。校准曲线显示,预测发生率与 ICC 的实际发生率更为一致,400 次重复 3 折交叉验证显示平均 AUC 为 0.851,具有良好的判别能力。决策曲线分析表明,列线图可以为患者带来净收益。

结论

基于 SCEUS 和临床特征的列线图可以有效地区分 P-HCC 和 ICC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验