Suppr超能文献

基于多模态超声图像的无创预测模型,用于区分良恶性局灶性肝病变。

A non-invasive predictive model based on multimodality ultrasonography images to differentiate malignant from benign focal liver lesions.

机构信息

Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.

Department of Ultrasound Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.

出版信息

Sci Rep. 2024 Oct 14;14(1):23996. doi: 10.1038/s41598-024-74740-7.

Abstract

We have developed a non-invasive predictive nomogram model that combines image features from Sonazoid contrast-enhanced ultrasound (SCEUS) and Sound touch elastography (STE) with clinical features for accurate differentiation of malignant from benign focal liver lesions (FLLs). This study ultimately encompassed 262 patients with FLLs from the First Hospital of Shanxi Medical University, covering the period from March 2020 to April 2023, and divided them into training set (n = 183) and test set (n = 79). Logistic regression analysis was used to identify independent indicators and develop a predictive model based on image features from SCEUS, STE, and clinical features. The area under the receiver operating characteristic (AUC) curve was determined to estimate the diagnostic performance of the nomogram with CEUS LI-RADS, and STE values. The C-index, calibration curve, and decision curve analysis (DCA) were further used for validation. Multivariate and LASSO logistic regression analyses identified that age, ALT, arterial phase hyperenhancement (APHE), enhancement level in the Kupffer phase, and Emean by STE were valuable predictors to distinguish malignant from benign lesions. The nomogram achieved AUCs of 0.988 and 0.978 in the training and test sets, respectively, outperforming the CEUS LI-RADS (0.754 and 0.824) and STE (0.909 and 0.923) alone. The C-index and calibration curve demonstrated that the nomogram offers high diagnostic accuracy with predicted values consistent with actual values. DCA indicated that the nomogram could increase the net benefit for patients. The predictive nomogram innovatively combining SCEUS, STE, and clinical features can effectively improve the diagnostic performance for focal liver lesions, which may help with individualized diagnosis and treatment in clinical practice.

摘要

我们开发了一种非侵入性预测列线图模型,该模型结合了 SonoVue 对比增强超声(SCEUS)和声触诊弹性成像(STE)的图像特征以及临床特征,可准确区分恶性和良性局灶性肝病变(FLL)。这项研究最终纳入了山西医科大学第一医院 262 例 FLL 患者,时间跨度为 2020 年 3 月至 2023 年 4 月,分为训练集(n=183)和测试集(n=79)。采用逻辑回归分析确定独立指标,并基于 SCEUS、STE 和临床特征建立预测模型。通过计算接受者操作特征(ROC)曲线下面积(AUC)来评估列线图联合 CEUS LI-RADS 和 STE 值的诊断性能。进一步采用 C 指数、校准曲线和决策曲线分析(DCA)进行验证。多变量和 LASSO 逻辑回归分析确定年龄、ALT、动脉期增强(APHE)、门脉期增强程度和 STE 的 Emean 是区分良恶性病变的有价值的预测指标。该列线图在训练集和测试集中的 AUC 分别为 0.988 和 0.978,优于单独的 CEUS LI-RADS(0.754 和 0.824)和 STE(0.909 和 0.923)。C 指数和校准曲线表明,该列线图具有较高的诊断准确性,预测值与实际值一致。DCA 表明该列线图可以为患者带来净收益的增加。该预测列线图创新性地结合了 SCEUS、STE 和临床特征,可有效提高局灶性肝病变的诊断性能,有助于临床实践中的个体化诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8935/11473797/0a866ef4e6c4/41598_2024_74740_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验