Suppr超能文献

使用遗传算法从功能近红外光谱(fNIRS)信号中进行最优特征选择用于脑机接口。

Optimal feature selection from fNIRS signals using genetic algorithms for BCI.

作者信息

Noori Farzan Majeed, Naseer Noman, Qureshi Nauman Khalid, Nazeer Hammad, Khan Rayyan Azam

机构信息

Department of Mechatronics Engineering, Air University, Sector E-9, Islamabad, 44000, Pakistan.

Department of Mechatronics Engineering, Air University, Sector E-9, Islamabad, 44000, Pakistan.

出版信息

Neurosci Lett. 2017 Apr 24;647:61-66. doi: 10.1016/j.neulet.2017.03.013. Epub 2017 Mar 20.

Abstract

In this paper, a novel technique for determination of the optimal feature combinations and, thereby, acquisition of the maximum classification performance for a functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI), is proposed. After obtaining motor-imagery and rest signals from the motor cortex, filtering is applied to remove the physiological noises. Six features (signal slope, signal mean, signal variance, signal peak, signal kurtosis and signal skewness) are then extracted from the oxygenated hemoglobin (HbO). Afterwards, the hybrid genetic algorithm (GA)-support vector machine (SVM) is applied in order to determine and classify 2- and 3-feature combinations across all subjects. The SVM classifier is applied to classify motor imagery versus rest. Moreover, four time windows (0-20s, 0-10s, 11-20s and 6-15s) are selected, and the hybrid GA-SVM is applied in order to extract the optimal 2- and 3-feature combinations. In the present study, the 11-20s time window showed significantly higher classification accuracies - the minimum accuracy was 91% - than did the other time windows (p<0.05). The proposed hybrid GA-SVM technique, by selecting optimal feature combinations for an fNIRS-based BCI, shows positive classification-performance-enhancing results.

摘要

本文提出了一种新颖的技术,用于确定最佳特征组合,从而为基于功能近红外光谱(fNIRS)的脑机接口(BCI)获得最大分类性能。从运动皮层获取运动想象和静息信号后,进行滤波以去除生理噪声。然后从含氧血红蛋白(HbO)中提取六个特征(信号斜率、信号均值、信号方差、信号峰值、信号峰度和信号偏度)。之后,应用混合遗传算法(GA)-支持向量机(SVM)来确定并对所有受试者的二特征和三特征组合进行分类。使用SVM分类器对运动想象与静息进行分类。此外,选择了四个时间窗口(0-20秒、0-10秒、11-20秒和6-15秒),并应用混合GA-SVM来提取最佳的二特征和三特征组合。在本研究中,11-20秒的时间窗口显示出显著更高的分类准确率——最低准确率为91%——高于其他时间窗口(p<0.05)。所提出的混合GA-SVM技术通过为基于fNIRS的BCI选择最佳特征组合,显示出积极的分类性能增强结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验