Suppr超能文献

[机器学习模型与Cox回归模型预测食管胃交界腺癌预后的效能]

[Efficacy of machine learning models Cox regression model for predicting prognosis of esophagogastric junction adenocarcinoma].

作者信息

Gao K, Wang Y, Cao H, Jia J

机构信息

Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2023 Jun 20;43(6):952-963. doi: 10.12122/j.issn.1673-4254.2023.06.10.

Abstract

OBJECTIVE

To compare the performance of machine learning models and traditional Cox regression model in predicting postoperative outcomes of patients with esophagogastric junction adenocarcinoma (AEG).

METHODS

This study was conducted among 203 AEG patients with complete clinical and follow-up data, who were treated in our hospital between September, 2015 and October, 2020. The clinicopathological data of the patients were processed for analysis using R language package and divided into training and validation datasets at the ratio of 3:1. The Cox proportional hazards regression model and 4 machine learning models were constructed for analyzing the datasets. ROC curves, calibration curves and clinical decision curves (DCA) were plotted. Internal validation of the machine learning models was performed to assess their predictive efficacy. The predictive performance of each model was evaluated by calculating the area under the curve (AUC), and the model fitting was assessed using the calibration curve.

RESULTS

For predicting 3-year survival based on the validation dataset, the AUC was 0.870 for Cox proportional hazard regression model, 0.901 for eXtreme Gradient Boosting (XGBoost), 0.791 for random forest, 0.832 for support vector machine, and 0.725 for multilayer perceptron; For predicting 5-year survival, the AUCs of these models were 0.915, 0.916, 0.758, 0.905, and 0.737, respectively. For internal validation, the AUCs of the 4 machine learning models decreased in the order of XGBoost (0.818), random forest (0.758), support vector machine (0.0.804), and multilayer perceptron (0.745).

CONCLUSION

The machine learning models show better predictive efficacy for survival outcomes of patients with AEG than Cox proportional hazard regression model, especially when proportional odds assumption or linear regression models are not applicable. XGBoost models have better performance than the other machine learning models, and the multi-layer perception model may have poor fitting results for a limited data volume.

摘要

目的

比较机器学习模型和传统Cox回归模型预测食管胃交界腺癌(AEG)患者术后结局的性能。

方法

本研究纳入了203例有完整临床和随访数据的AEG患者,这些患者于2015年9月至2020年10月在我院接受治疗。使用R语言包对患者的临床病理数据进行处理分析,并按3:1的比例分为训练集和验证集。构建Cox比例风险回归模型和4种机器学习模型来分析数据集。绘制ROC曲线、校准曲线和临床决策曲线(DCA)。对机器学习模型进行内部验证以评估其预测效能。通过计算曲线下面积(AUC)评估每个模型的预测性能,并使用校准曲线评估模型拟合情况。

结果

基于验证集预测3年生存率时,Cox比例风险回归模型的AUC为0.870,极端梯度提升(XGBoost)为0.901,随机森林为0.791,支持向量机为0.832,多层感知器为0.725;预测5年生存率时,这些模型的AUC分别为0.915、0.916、0.758、0.905和0.737。对于内部验证,4种机器学习模型的AUC按以下顺序降低:XGBoost(0.818)、随机森林(0.758)、支持向量机(0.804)和多层感知器(0.745)。

结论

机器学习模型在预测AEG患者生存结局方面比Cox比例风险回归模型具有更好的预测效能,尤其是在比例优势假设或线性回归模型不适用时。XGBoost模型的性能优于其他机器学习模型,而多层感知模型对于有限的数据量可能拟合效果较差。

相似文献

本文引用的文献

1
Implementing machine learning in medicine.在医学中实施机器学习。
CMAJ. 2021 Aug 30;193(34):E1351-E1357. doi: 10.1503/cmaj.202434. Epub 2021 Aug 29.
2
Regression Models and Multivariate Life Tables.回归模型与多变量生命表
J Am Stat Assoc. 2021;116(535):1330-1345. doi: 10.1080/01621459.2020.1713792. Epub 2020 Feb 10.
9
The 2019 WHO classification of tumours of the digestive system.2019年世界卫生组织消化系统肿瘤分类。
Histopathology. 2020 Jan;76(2):182-188. doi: 10.1111/his.13975. Epub 2019 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验