Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Oncora Medical, Inc, Philadelphia, Pennsylvania.
Int J Radiat Oncol Biol Phys. 2021 Sep 1;111(1):135-142. doi: 10.1016/j.ijrobp.2021.04.019. Epub 2021 Apr 29.
Patients with gastrointestinal (GI) cancer frequently experience unplanned hospitalizations, but predictive tools to identify high-risk patients are lacking. We developed a machine learning model to identify high-risk patients.
In the study, 1341 consecutive patients undergoing GI (abdominal or pelvic) radiation treatment (RT) from March 2016 to July 2018 (derivation) and July 2018 to January 2019 (validation) were assessed for unplanned hospitalizations within 30 days of finishing RT. In the derivation cohort of 663 abdominal and 427 pelvic RT patients, a machine learning approach derived random forest, gradient boosted decision tree, and logistic regression models to predict 30-day unplanned hospitalizations. Model performance was assessed using area under the receiver operating characteristic curve (AUC) and prospectively validated in 161 abdominal and 90 pelvic RT patients using Mann-Whitney rank-sum test. Highest quintile of risk for hospitalization was defined as "high-risk" and the remainder "low-risk." Hospitalizations for high- versus low-risk patients were compared using Pearson's χ test and survival using Kaplan-Meier log-rank test.
Overall, 13% and 11% of patients receiving abdominal and pelvic RT experienced 30-day unplanned hospitalization. In the derivation phase, gradient boosted decision tree cross-validation yielded AUC = 0.823 (abdominal patients) and random forest yielded AUC = 0.776 (pelvic patients). In the validation phase, these models yielded AUC = 0.749 and 0.764, respectively (P < .001 and P = .002). Validation models discriminated high- versus low-risk patients: in abdominal RT patients, frequency of hospitalization was 39% versus 9% in high- versus low-risk groups (P < .001) and 6-month survival was 67% versus 92% (P = .001). In pelvic RT patients, frequency of hospitalization was 33% versus 8% (P = .002) and survival was 86% versus 92% (P = .15) in high- versus low-risk patients.
In patients with GI cancer undergoing RT as part of multimodality treatment, machine learning models for 30-day unplanned hospitalization discriminated high- versus low-risk patients. Future applications will test utility of models to prompt interventions to decrease hospitalizations and adverse outcomes.
胃肠道(GI)癌症患者经常需要非计划性住院治疗,但目前缺乏用于识别高危患者的预测工具。本研究旨在开发一种机器学习模型以识别高危患者。
本研究回顾性分析了 2016 年 3 月至 2018 年 7 月(推导期)和 2018 年 7 月至 2019 年 1 月(验证期)期间 1341 例连续接受胃肠道(腹部或盆腔)放疗(RT)的患者,评估其在完成 RT 后 30 天内非计划性住院的情况。在推导队列中,有 663 例腹部 RT 患者和 427 例盆腔 RT 患者,采用机器学习方法(随机森林、梯度提升决策树和逻辑回归)建立预测模型,以预测 30 天内非计划性住院的情况。使用接受者操作特征曲线下面积(AUC)评估模型性能,并通过 Mann-Whitney 秩和检验在 161 例腹部 RT 患者和 90 例盆腔 RT 患者中进行前瞻性验证。将风险最高的五分之一定义为“高风险”,其余为“低风险”。使用 Pearson χ 检验比较高风险和低风险患者的住院情况,使用 Kaplan-Meier 对数秩检验比较生存情况。
总体而言,13%的腹部 RT 患者和 11%的盆腔 RT 患者在 30 天内需要非计划性住院治疗。在推导阶段,梯度提升决策树的交叉验证得出 AUC 值为 0.823(腹部患者)和 0.776(盆腔患者)。在验证阶段,这两种模型的 AUC 值分别为 0.749 和 0.764(P<0.001 和 P=0.002)。验证模型可以区分高风险和低风险患者:在腹部 RT 患者中,高风险组的住院频率为 39%,低风险组为 9%(P<0.001),6 个月生存率为 67%和 92%(P=0.001)。在盆腔 RT 患者中,高风险组的住院频率为 33%,低风险组为 8%(P=0.002),生存率为 86%和 92%(P=0.15)。
在接受多模式治疗中包括 RT 的胃肠道癌症患者中,用于预测 30 天内非计划性住院的机器学习模型可以区分高风险和低风险患者。未来的应用将测试模型在提示干预措施以减少住院和不良结局方面的效用。