Suppr超能文献

为药理学家回顾贝叶斯方法,其中马尔可夫链蒙特卡罗(MCMC)和哈密顿蒙特卡罗(HMC)作为经典似然统计的竞争对手。

A review of the Bayesian approach with the MCMC and the HMC as a competitor of classical likelihood statistics for pharmacometricians.

作者信息

Choi Kyungmee

机构信息

College of Science and Technology, Hongik University, Sejong 30016, Korea.

出版信息

Transl Clin Pharmacol. 2023 Jun;31(2):69-84. doi: 10.12793/tcp.2023.31.e9. Epub 2023 Jun 26.

Abstract

This article reviews the Bayesian inference with the Monte Carlo Markov Chain (MCMC) and the Hamiltonian Monte Carlo (HMC) samplers as a competitor of the classical likelihood statistical inference for pharmacometricians. The MCMC and the HMC samplers have greatly contributed to realization of the Bayesian methods with minimal requirement of mathematical theory. They do not require any closed form of the posterior density nor linear approximation of complex nonlinear models in high dimension even with non-conjugate priors. The HMC even weakens the dependency of the chain and improves computational efficiency. Pharmacometrics is one of great beneficiaries since they use complex multivariate multilevel nonlinear mixed effects models based on the restricted maximum likelihood estimation. Comprehension of the Bayesian approach will help pharmacometricians to access the data analysis more conveniently.

摘要

本文回顾了蒙特卡罗马尔可夫链(MCMC)和哈密顿蒙特卡罗(HMC)采样器的贝叶斯推理,将其作为药代动力学专家进行经典似然统计推断的一种竞争方法。MCMC和HMC采样器极大地推动了贝叶斯方法的实现,对数学理论的要求极低。它们既不需要后验密度的任何封闭形式,也不需要对高维复杂非线性模型进行线性近似,即使在先验非共轭的情况下也是如此。HMC甚至减弱了链的依赖性并提高了计算效率。药代动力学是最大的受益者之一,因为他们使用基于受限最大似然估计的复杂多元多级非线性混合效应模型。理解贝叶斯方法将有助于药代动力学专家更方便地进行数据分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc5/10333649/7c190fc07846/tcp-31-69-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验