Choi Kyungmee
College of Science and Technology, Hongik University, Sejong 30016, Korea.
Transl Clin Pharmacol. 2023 Jun;31(2):69-84. doi: 10.12793/tcp.2023.31.e9. Epub 2023 Jun 26.
This article reviews the Bayesian inference with the Monte Carlo Markov Chain (MCMC) and the Hamiltonian Monte Carlo (HMC) samplers as a competitor of the classical likelihood statistical inference for pharmacometricians. The MCMC and the HMC samplers have greatly contributed to realization of the Bayesian methods with minimal requirement of mathematical theory. They do not require any closed form of the posterior density nor linear approximation of complex nonlinear models in high dimension even with non-conjugate priors. The HMC even weakens the dependency of the chain and improves computational efficiency. Pharmacometrics is one of great beneficiaries since they use complex multivariate multilevel nonlinear mixed effects models based on the restricted maximum likelihood estimation. Comprehension of the Bayesian approach will help pharmacometricians to access the data analysis more conveniently.
本文回顾了蒙特卡罗马尔可夫链(MCMC)和哈密顿蒙特卡罗(HMC)采样器的贝叶斯推理,将其作为药代动力学专家进行经典似然统计推断的一种竞争方法。MCMC和HMC采样器极大地推动了贝叶斯方法的实现,对数学理论的要求极低。它们既不需要后验密度的任何封闭形式,也不需要对高维复杂非线性模型进行线性近似,即使在先验非共轭的情况下也是如此。HMC甚至减弱了链的依赖性并提高了计算效率。药代动力学是最大的受益者之一,因为他们使用基于受限最大似然估计的复杂多元多级非线性混合效应模型。理解贝叶斯方法将有助于药代动力学专家更方便地进行数据分析。