Suppr超能文献

在R语言中学习哈密顿蒙特卡洛方法。

Learning Hamiltonian Monte Carlo in R.

作者信息

Thomas Samuel, Tu Wanzhu

机构信息

Indiana University School of Medicine.

出版信息

Am Stat. 2021;75(4):403-413. doi: 10.1080/00031305.2020.1865198. Epub 2021 Jan 31.

Abstract

Hamiltonian Monte Carlo (HMC) is a powerful tool for Bayesian computation. In comparison with the traditional Metropolis-Hastings algorithm, HMC offers greater computational efficiency, especially in higher dimensional or more complex modeling situations. To most statisticians, however, the idea of HMC comes from a less familiar origin, one that is based on the theory of classical mechanics. Its implementation, either through Stan or one of its derivative programs, can appear opaque to beginners. A lack of understanding of the inner working of HMC, in our opinion, has hindered its application to a broader range of statistical problems. In this article, we review the basic concepts of HMC in a language that is more familiar to statisticians, and we describe an HMC implementation in R, one of the most frequently used statistical software environments. We also present hmclearn, an R package for learning HMC. This package contains a general-purpose HMC function for data analysis. We illustrate the use of this package in common statistical models. In doing so, we hope to promote this powerful computational tool for wider use. Example code for common statistical models is presented as supplementary material for online publication.

摘要

哈密顿蒙特卡罗(HMC)是贝叶斯计算的强大工具。与传统的梅特罗波利斯-黑斯廷斯算法相比,HMC具有更高的计算效率,尤其是在高维或更复杂的建模情况下。然而,对大多数统计学家来说,HMC的概念源于一个不太熟悉的领域,即基于经典力学理论。通过斯坦(Stan)或其衍生程序之一来实现HMC,对于初学者来说可能显得晦涩难懂。我们认为,对HMC内部工作原理的缺乏理解阻碍了它在更广泛的统计问题中的应用。在本文中,我们用统计学家更熟悉的语言回顾了HMC的基本概念,并描述了在R(最常用的统计软件环境之一)中的HMC实现。我们还展示了hmclearn,一个用于学习HMC的R包。这个包包含一个用于数据分析的通用HMC函数。我们说明了该包在常见统计模型中的使用。通过这样做,我们希望推广这个强大的计算工具以供更广泛地使用。常见统计模型的示例代码作为在线发表的补充材料呈现。

相似文献

1
Learning Hamiltonian Monte Carlo in R.在R语言中学习哈密顿蒙特卡洛方法。
Am Stat. 2021;75(4):403-413. doi: 10.1080/00031305.2020.1865198. Epub 2021 Jan 31.
3
Using the Stan Program for Bayesian Item Response Theory.使用斯坦程序进行贝叶斯项目反应理论分析。
Educ Psychol Meas. 2018 Jun;78(3):384-408. doi: 10.1177/0013164417693666. Epub 2017 Feb 1.
5
A general construction for parallelizing Metropolis-Hastings algorithms.一种并行化 Metropolis-Hastings 算法的通用构造。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17408-13. doi: 10.1073/pnas.1408184111. Epub 2014 Nov 24.
6
Quantum-Inspired Magnetic Hamiltonian Monte Carlo.量子启发式磁哈密顿蒙特卡罗。
PLoS One. 2021 Oct 5;16(10):e0258277. doi: 10.1371/journal.pone.0258277. eCollection 2021.
8
Variational Hamiltonian Monte Carlo via Score Matching.通过得分匹配的变分哈密顿蒙特卡罗方法
Bayesian Anal. 2018 Jun;13(2):485-506. doi: 10.1214/17-ba1060. Epub 2017 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验