Suppr超能文献

基于生理学的纳米颗粒生物分布的药代动力学模型:现有模型、模拟软件和数据分析工具的综述。

Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools.

机构信息

Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia.

Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia.

出版信息

Int J Mol Sci. 2022 Oct 19;23(20):12560. doi: 10.3390/ijms232012560.

Abstract

Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of our body to recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical and chemical properties, payload and surface modification, make the designing of effective carriers very difficult. In this scenario, physiologically based pharmacokinetic modeling can help to design the particles and eventually predict their ability to reach the target and treat the tumor. This effort is performed by scientists with specific expertise and skills and familiarity with artificial intelligence tools such as advanced software that are not usually in the "cords" of traditional medical or material researchers. The goal of this review was to highlight the advantages that computational modeling could provide to nanomedicine and bring together scientists with different background by portraying in the most simple way the work of computational developers through the description of the tools that they use to predict nanoparticle transport and tumor targeting in our body.

摘要

癌症治疗和药物研发需要靶向治疗和毒性更小的治疗干预,才能在对抗这种疾病方面取得真正的进展。在这种情况下,纳米医学作为一种可靠的工具出现了,可以改善药物的药代动力学,并将基于大分子的临床生物制剂转化为临床应用。然而,我们的身体识别异物的能力,以及载体运输的异质性,源于颗粒物理和化学性质、有效载荷和表面修饰的结合,使得有效载体的设计变得非常困难。在这种情况下,基于生理学的药代动力学模型可以帮助设计颗粒,并最终预测其到达目标和治疗肿瘤的能力。这项工作是由具有特定专业知识和技能的科学家完成的,他们熟悉人工智能工具,如先进的软件,而这些工具通常不在传统医学或材料研究人员的“能力范围”内。本文的目的是强调计算模型可以为纳米医学提供的优势,并通过描述计算开发人员使用的工具,将具有不同背景的科学家聚集在一起,以最简单的方式描述他们的工作,从而预测纳米颗粒在我们体内的运输和肿瘤靶向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d0/9604366/9f15ac1453f4/ijms-23-12560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验