Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
Transl Psychiatry. 2023 Jul 13;13(1):257. doi: 10.1038/s41398-023-02556-6.
Evidence from cross-sectional human studies, and preliminary microbial-based intervention studies, have implicated the microbiota-gut-brain axis in the neurobiology of autism spectrum disorder (ASD). Using a prospective longitudinal study design, we investigated the developmental profile of the fecal microbiota and metabolome in infants with (n = 16) and without (n = 19) a family history of ASD across the first 36 months of life. In addition, the general developmental levels of infants were evaluated using the Mullen Scales of Early Learning (MSEL) test at 5 and 36 months of age, and with ADOS-2 at 36 months of age. At 5 months of age, infants at elevated-likelihood of ASD (EL) harbored less Bifidobacterium and more Clostridium and Klebsiella species compared to the low-likelihood infants (LL). Untargeted metabolic profiling highlighted that LL infants excreted a greater amount of fecal γ-aminobutyric acid (GABA) at 5 months, which progressively declined with age. Similar age-dependent patterns were not observed in the EL group, with GABA being consistently low across all timepoints. Integrated microbiome-metabolome analysis showed a positive correlation between GABA and Bifidobacterium species and negative associations with Clostridium species. In vitro experiments supported these observations demonstrating that bifidobacteria can produce GABA while clostridia can consume it. At the behavioral level, there were no significant differences between the EL and LL groups at 5 months. However, at 36 months of age, the EL group had significantly lower MSEL and ADOS-2 scores compared to the LL group. Taken together, the present results reveal early life alterations in gut microbiota composition and functionality in infants at elevated-likelihood of ASD. These changes occur before any behavioral impairments can be detected, supporting a possible role for the gut microbiota in emerging behavioral variability later in life.
横断面人体研究和初步的基于微生物的干预研究的证据表明,微生物群-肠道-大脑轴与自闭症谱系障碍(ASD)的神经生物学有关。我们采用前瞻性纵向研究设计,在婴儿出生后的前 36 个月内,调查了有(n=16)和无(n=19)ASD 家族史的婴儿的粪便微生物群和代谢组的发育情况。此外,还使用 Mullen 早期学习量表(MSEL)在 5 个月和 36 个月时以及使用 ADOS-2 在 36 个月时评估了婴儿的一般发育水平。在 5 个月时,与低可能性婴儿(LL)相比,具有高可能性 ASD(EL)的婴儿体内双歧杆菌较少,而梭菌和克雷伯氏菌较多。非靶向代谢组学分析突出表明,LL 婴儿在 5 个月时排出的粪便 γ-氨基丁酸(GABA)量较大,随着年龄的增长逐渐减少。EL 组没有观察到类似的年龄依赖性模式,GABA 在所有时间点都持续较低。微生物组-代谢组综合分析显示 GABA 与双歧杆菌之间呈正相关,与梭菌呈负相关。体外实验支持了这些观察结果,表明双歧杆菌可以产生 GABA,而梭菌可以消耗它。在行为水平上,EL 和 LL 组在 5 个月时没有显著差异。然而,在 36 个月时,EL 组的 MSEL 和 ADOS-2 评分明显低于 LL 组。综上所述,本研究结果揭示了高可能性 ASD 婴儿的早期生活中肠道微生物群组成和功能的改变。这些变化发生在任何行为障碍可以检测到之前,支持了肠道微生物群在以后生活中出现行为变异性的可能作用。
Am J Physiol Gastrointest Liver Physiol. 2024-8-1
Cochrane Database Syst Rev. 2023-10-9
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2017-11-21
Cochrane Database Syst Rev. 2022-8-25
Cochrane Database Syst Rev. 2022-8-9
Infant Behav Dev. 2025-6
Front Cell Neurosci. 2025-8-6
Adv Exp Med Biol. 2025
Nutrients. 2022-4-1
Autism Res. 2022-5
Front Cell Dev Biol. 2022-2-7
J Hum Nutr Diet. 2022-4