Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
Nat Commun. 2023 Jul 13;14(1):4194. doi: 10.1038/s41467-023-39866-8.
Direct visualization of surface chemical dynamics in solution is essential for understanding the mechanisms involved in nanocatalysis and electrochemistry; however, it is challenging to achieve high spatial and temporal resolution. Here, we present an azimuth-modulated plasmonic imaging technique capable of imaging dynamic interfacial changes. The method avoids strong interference from reflected light and consequently eliminates the parabolic-like interferometric patterns in the images, allowing for a 67-fold increase in the spatial resolution of plasmonic imaging. We demonstrate that this optical imaging approach enables comprehensive analyses of surface chemical dynamics and identification of previously unknown surface reaction heterogeneity by investigating electrochemical redox reactions over single silver nanowires as an example. This work provides a general strategy for high-resolution plasmonic imaging of surface electrochemical dynamics and other interfacial chemical reactions, complementing existing surface characterization methods.
直接可视化溶液中表面化学动力学对于理解纳米催化和电化学中涉及的机制至关重要;然而,实现高时空分辨率具有挑战性。在这里,我们提出了一种方位调制等离子体成像技术,能够对动态界面变化进行成像。该方法避免了反射光的强烈干扰,因此消除了图像中的类抛物线干涉图案,使等离子体成像的空间分辨率提高了 67 倍。我们通过以单个银纳米线为例研究电化学氧化还原反应,证明了这种光学成像方法能够通过全面分析表面化学动力学并识别以前未知的表面反应非均质性。这项工作为表面电化学动力学和其他界面化学反应的高分辨率等离子体成像提供了一种通用策略,补充了现有的表面表征方法。