Suppr超能文献

罕见恶性肿瘤中的生物标志物发现:隐性遗传性营养不良性大疱性表皮松解症相关皮肤鳞状细胞癌的miRNA特征开发

Biomarker Discovery in Rare Malignancies: Development of a miRNA Signature for RDEB-cSCC.

作者信息

Zauner Roland, Wimmer Monika, Atzmueller Sabine, Proell Johannes, Niklas Norbert, Ablinger Michael, Reisenberger Manuela, Lettner Thomas, Illmer Julia, Dorfer Sonja, Koller Ulrich, Guttmann-Gruber Christina, Hofbauer Josefina Piñón, Bauer Johann W, Wally Verena

机构信息

EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.

Center for Medical Research, Medical Faculty, Johannes-Kepler-University, 4020 Linz, Austria.

出版信息

Cancers (Basel). 2023 Jun 22;15(13):3286. doi: 10.3390/cancers15133286.

Abstract

Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.

摘要

机器学习已被证明是识别肿瘤诊断生物标志物的有力工具,但在罕见癌症中,由于患者数量少,其应用常常受到阻碍。在患有隐性营养不良性大疱性表皮松解症(RDEB)的患者中,早年发生的侵袭性皮肤鳞状细胞癌(cSCC)是一个主要威胁,及时检测对于促进肿瘤的及时切除至关重要。由于miRNA已被证明具有作为液体活检标志物的巨大潜力,我们对源自培养的原代细胞的miRNA特征进行了表征,这些原代细胞对RDEB患者的肿瘤检测具有特异性。为了解决RDEB样本可及性的限制,我们分析了RDEB miRNA谱与来自癌症基因组图谱(TCGA)数据库的其他肿瘤实体的相似性。由于与RDEB-SCC的miRNA表达相似,我们使用头颈鳞状细胞癌(HN-SCC)数据训练了一个肿瘤预测模型。从弹性网络逻辑回归模型中得出了使用33个、10个和3个miRNA的三种不同复杂程度的模型。所有三种模型的预测性能在独立的HN-SCC测试数据集上进行了测定(AUC-ROC分别为100%、83%和96%),以及在基于细胞的RDEB miRNA-Seq数据上进行了测定(AUC-ROC分别为100%、100%和91%)。此外,这些模型基于RDEB外泌体预测肿瘤样本的能力(AUC-ROC分别为100%、93%和100%)证明了其在临床环境中的潜在可行性。我们的结果支持了通过利用公开可用数据来识别诊断性miRNA特征的这种方法的可行性,并将为改善RDEB-SCC的早期检测奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a7b/10340387/3897b3bb1252/cancers-15-03286-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验