Suppr超能文献

通过非原位电子背散射衍射(EBSD)和晶体塑性自洽(VPSC)揭示的挤压态Mg-5Al-0.6Sc合金在室温和高温拉伸过程中的微观结构演变及变形行为

Microstructure Evolution and Deformation Behavior of Extruded Mg-5Al-0.6Sc Alloy during Room and Elevated Temperature Tension Revealed by Ex-Situ EBSD and VPSC.

作者信息

Zhang Lei, Luan Shiyu, Yuan Shuai, Wang Jinhui, Chen Lijia, Jin Peipeng

机构信息

School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.

Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China.

出版信息

Materials (Basel). 2023 Jun 22;16(13):4534. doi: 10.3390/ma16134534.

Abstract

In this study, the microstructure evolution and deformation behavior of the extruded Mg-5Al-0.6Sc (AS51) alloy during tensile testing at room temperature (RT) and 250 °C were investigated by electron backscattered diffraction (EBSD) characterization and Visco Plastic Self Consistent (VPSC) simulation. The results showed that a continuous hardening behavior of the alloy occurred during the deformation at RT, and a certain softening was caused by the occurrence of dynamic recovery (DRV) and dynamic recrystallization (DRX) in the late stage of deformation at 250 °C. The primary deformation mechanism at both RT and 250 °C was dislocation slip, with prismatic slip being the dominant deformation mode, and no significant changes in grain size or texture type occurred. By identifying the activated twin variants, the results indicated that the selection of twin variants was closely related to the local stress concentration. The relatively low activation frequency of extension twinning at 250 °C is partly attributed to the fact that the consumption of dislocations by DRV and DRX can effectively relax the local stress concentration. Meanwhile, the DRX mechanism during the deformation of the alloy at 250 °C was mainly discontinuous dynamic recrystallization (DDRX), with a low recrystallization fraction.

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验