Song Yuelin, Fan Jiangkun, Liu Xudong, Zhang Peizhe, Li Jinshan
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
Innovation Center, NPU·Chongqing, Chongqing 401135, China.
Materials (Basel). 2021 Sep 3;14(17):5059. doi: 10.3390/ma14175059.
Plane strain compression tests were used to study the deformation behavior of an Inconel 625 alloy sheet at various temperatures and strain rates. The peak stress was selected to establish the constitutive equation, and the processing maps under different strains were drawn. The results show that the effective stress-strain curve of Inconel 625 has typical dynamic recrystallization (DRX) characteristics. With the increasing deformation temperature and the decreasing strain rate, the softening effect is significantly enhanced. The parameters of the constitutive equation are calculated, and the average error of the constitutive equation is 5.68%. Through the analysis of the processing map, a deformation temperature of 950-960 °C with a strain rate of 0.007-0.05 s were determined as the unstable region, and obvious local plastic-rheological zones were found in the unstable region. The optimum deformation condition was found to be 1020-1060 °C/0.005-0.03 s. Through electron backscattered diffraction (EBSD) characterization, it was found that both the increase of temperature and the decrease of strain rate significantly promote the recrystallization process. At a low strain rate, the main recrystallization mechanism is discontinuous dynamic recrystallization (DDRX). It is expected that the above results can provide references for the optimization of the rolling process and microstructure control of an Inconel 625 alloy sheet.
采用平面应变压缩试验研究了Inconel 625合金板材在不同温度和应变速率下的变形行为。选取峰值应力建立本构方程,并绘制了不同应变下的加工图。结果表明,Inconel 625合金的有效应力-应变曲线具有典型的动态再结晶(DRX)特征。随着变形温度的升高和应变速率的降低,软化效果显著增强。计算了本构方程的参数,本构方程的平均误差为5.68%。通过对加工图的分析,确定变形温度为950-960℃、应变速率为0.007-0.05 s⁻¹的区域为不稳定区,在不稳定区发现了明显的局部塑性流变区。最佳变形条件为1020-1060℃/0.005-0.03 s⁻¹。通过电子背散射衍射(EBSD)表征发现,温度升高和应变速率降低均显著促进再结晶过程。在低应变速率下,主要的再结晶机制为不连续动态再结晶(DDRX)。期望上述结果能为Inconel 625合金板材轧制工艺优化及组织控制提供参考。