A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia.
Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia.
Int J Mol Sci. 2023 Jul 6;24(13):11175. doi: 10.3390/ijms241311175.
Composites of synthetic bone mineral substitutes (BMS) and biodegradable polyesters are of particular interest for bone surgery and orthopedics. Manufacturing of composite scaffolds commonly uses mixing of the BMS with polymer melts. Melt processing requires a high homogeneity of the mixing, and is complicated by BMS-promoted thermal degradation of polymers. In our work, poly(-lactide) (PLLA) and poly(ε-caprolactone) (PCL) composites reinforced by commercial β-tricalcium phosphate (βTCP) or synthesized carbonated hydroxyapatite with hexagonal and plate-like crystallite shapes (hCAp and pCAp, respectively) were fabricated using injection molding. pCAp-based composites showed advanced mechanical and thermal characteristics, and the best set of mechanical characteristics was observed for the PLLA-based composite containing 25 wt% of pCAp. To achieve compatibility of polyesters and pCAp, reactive block copolymers of PLLA or PCL with poly(butyl ethylene phosphate) (C1 and C2, respectively) were introduced to the composite. The formation of a polyester--poly(ethylene phosphoric acid) (PEPA) compatibilizer during composite preparation, followed by chemical binding of PEPA with pCAp, have been proved experimentally. The presence of 5 wt% of the compatibilizer provided deeper homogenization of the composite, resulting in a marked increase in strength and moduli as well as a more pronounced nucleation effect during isothermal crystallization. The use of C1 increased the thermal stability of the PLLA-based composite, containing 25 wt% of pCAp. In view of positive impacts of polyester--PEPA on composite homogeneity, mechanical characteristics, and thermal stability, polyester--PEPA will find application in the further development of composite materials for bone surgery and orthopedics.
合成骨矿物质替代物(BMS)和可生物降解聚酯的复合材料在骨外科和矫形外科中特别感兴趣。复合支架的制造通常使用 BMS 与聚合物熔体混合。熔体加工需要混合的高度均一性,并且由于 BMS 促进聚合物的热降解而变得复杂。在我们的工作中,使用注塑成型制备了商业 β-磷酸三钙(βTCP)或合成具有六方和板状晶形的碳酸羟基磷灰石(hCAp 和 pCAp,分别)增强的聚(-乳酸)(PLLA)和聚(ε-己内酯)(PCL)复合材料。基于 pCAp 的复合材料表现出先进的机械和热特性,并且在含有 25wt%的 pCAp 的 PLLA 基复合材料中观察到最佳的机械特性。为了实现聚酯和 pCAp 的相容性,将 PLLA 或 PCL 与聚(丁烯乙烯磷酸酯)(C1 和 C2,分别)的反应性嵌段共聚物引入到复合材料中。在复合材料制备过程中形成聚酯-聚(磷酸乙酯)(PEPA)增容剂,随后通过化学结合将 PEPA 与 pCAp 结合,已通过实验证明。存在 5wt%的增容剂提供了复合材料更深层次的均匀化,导致强度和模量的明显增加以及等温结晶期间更明显的成核效应。C1 的使用提高了含有 25wt%的 pCAp 的 PLLA 基复合材料的热稳定性。鉴于聚酯-PEPA 对复合材料均匀性、机械特性和热稳定性的积极影响,聚酯-PEPA 将在骨外科和矫形外科用复合材料的进一步发展中得到应用。