Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
Int J Mol Sci. 2023 Jul 7;24(13):11189. doi: 10.3390/ijms241311189.
Melon is a recalcitrant plant for stable genetic transformation. Various protocols have been tried to improve melon transformation efficiency; however, it remains significantly low compared to other plants such as tomato. In this study, the primary focus was on the optimization of key parameters during the inoculation and co-culture steps of the genetic transformation protocol. Our results showed that immersing the explants in the inoculation medium for 20 min significantly enhanced transformation efficiency. During the co-culture step, the use of filer paper, 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES), and a temperature of 24 °C significantly enhanced the melon transformation efficiency. Furthermore, the impact of different ethylene inhibitors and absorbers on the transformation efficiency of various melon varieties was explored. Our findings revealed that the use of these compounds led to a significant improvement in the transformation efficiency of the tested melon varieties. Subsequently, using our improved protocol and reporter-gene construct, diploid transgenic melons successfully generated. The efficiency of plant genetic transformation ranged from 3.73 to 4.83%. Expanding the scope of our investigation, the optimized protocol was applied to generate stable gene-edited melon lines using the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated cytosine base editor and obtained melon lines with editions (C-to-T and C-to-G) in the eukaryotic translation initiation factor 4E, gene. In conclusion, the optimized melon transformation protocol, along with the utilization of the CRISPR/Cas9-mediated cytosine base editor, provides a reliable framework for functional gene engineering in melon. These advancements hold significant promise for furthering genetic research and facilitating crop improvement in this economically important plant species.
甜瓜是一种遗传转化稳定的顽拗植物。已经尝试了各种方案来提高甜瓜的转化效率;然而,与番茄等其他植物相比,其转化效率仍然明显较低。在这项研究中,主要关注于优化遗传转化方案中接种和共培养步骤的关键参数。我们的结果表明,将外植体在接种培养基中浸泡 20 分钟可显著提高转化效率。在共培养步骤中,使用滤纸条、10mM 2-(N-吗啉代)乙磺酸(MES)和 24°C 的温度可显著提高甜瓜的转化效率。此外,还探讨了不同乙烯抑制剂和吸收剂对各种甜瓜品种转化效率的影响。我们的研究结果表明,这些化合物的使用导致测试的甜瓜品种的转化效率显著提高。随后,使用我们改进的方案和报告基因构建体,成功生成了二倍体转基因甜瓜。植物遗传转化的效率范围为 3.73%至 4.83%。通过扩大研究范围,使用优化的方案成功地利用 CRISPR/Cas9 介导的胞嘧啶碱基编辑器生成了稳定的基因编辑甜瓜系,并在真核翻译起始因子 4E 基因中获得了 C 到 T 和 C 到 G 的编辑(编辑)的甜瓜系。总之,优化的甜瓜转化方案以及 CRISPR/Cas9 介导的胞嘧啶碱基编辑器的利用,为甜瓜中的功能基因工程提供了可靠的框架。这些进展为进一步进行遗传研究和促进这个经济上重要的植物物种的作物改良提供了巨大的潜力。