Falcioni Renan, Santos Glaucio Leboso Alemparte Abrantes Dos, Crusiol Luis Guilherme Teixeira, Antunes Werner Camargos, Chicati Marcelo Luiz, Oliveira Roney Berti de, Demattê José A M, Nanni Marcos Rafael
Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.
Embrapa Soja (National Soybean Research Center-Brazilian Agricultural Research Corporation), Rodovia Carlos João Strass, s/nº, Distrito de Warta, Londrina 86001-970, Paraná, Brazil.
Plants (Basel). 2023 Jul 2;12(13):2526. doi: 10.3390/plants12132526.
Hyperspectral technology offers significant potential for non-invasive monitoring and prediction of morphological parameters in plants. In this study, UV-VIS-NIR-SWIR reflectance hyperspectral data were collected from L. plants using a spectroradiometer. These plants were grown under different light and gibberellic acid (GA) concentrations. Through spectroscopy and multivariate analyses, key growth parameters, such as height, leaf area, energy yield, and biomass, were effectively evaluated based on the interaction of light with leaf structures. The shortwave infrared (SWIR) bands, specifically SWIR1 and SWIR2, showed the strongest correlations with these growth parameters. When classifying tobacco plants grown under different GA concentrations in greenhouses, artificial intelligence (AI) and machine learning (ML) algorithms were employed, achieving an average accuracy of over 99.1% using neural network (NN) and gradient boosting (GB) algorithms. Among the 34 tested vegetation indices, the photochemical reflectance index (PRI) demonstrated the strongest correlations with all evaluated plant phenotypes. Partial least squares regression (PLSR) models effectively predicted morphological attributes, with R values ranging from 0.81 to 0.87 and RPD values exceeding 2.09 for all parameters. Based on Pearson's coefficient XYZ interpolations and HVI algorithms, the NIR-SWIR band combination proved the most effective for predicting height and leaf area, while VIS-NIR was optimal for optimal energy yield, and VIS-VIS was best for predicting biomass. To further corroborate these findings, the SWIR bands for certain morphological characteristic wavelengths selected with -PLS were most significant for SWIR1 and SWIR2, while -PLS showed a more uniform distribution in VIS-NIR-SWIR bands. Therefore, SWIR hyperspectral bands provide valuable insights into developing alternative bands for remote sensing measurements to estimate plant morphological parameters. These findings underscore the potential of remote sensing technology for rapid, accurate, and non-invasive monitoring within stationary high-throughput phenotyping systems in greenhouses. These insights align with advancements in digital and precision technology, indicating a promising future for research and innovation in this field.
高光谱技术在植物形态参数的非侵入性监测和预测方面具有巨大潜力。在本研究中,使用光谱辐射计从L.植物中收集了紫外 - 可见 - 近红外 - 短波红外反射率高光谱数据。这些植物在不同光照和赤霉素(GA)浓度下生长。通过光谱学和多变量分析,基于光与叶片结构的相互作用,有效地评估了关键生长参数,如高度、叶面积、能量产量和生物量。短波红外(SWIR)波段,特别是SWIR1和SWIR2,与这些生长参数显示出最强的相关性。在对温室中不同GA浓度下生长的烟草植物进行分类时,采用了人工智能(AI)和机器学习(ML)算法,使用神经网络(NN)和梯度提升(GB)算法实现了超过99.1%的平均准确率。在34个测试的植被指数中,光化学反射率指数(PRI)与所有评估的植物表型显示出最强的相关性。偏最小二乘回归(PLSR)模型有效地预测了形态属性,所有参数的R值范围为0.81至0.87,RPD值超过2.09。基于皮尔逊系数XYZ插值和HVI算法,近红外 - 短波红外波段组合被证明对预测高度和叶面积最有效,而可见 - 近红外波段对最佳能量产量最佳,可见 - 可见波段对预测生物量最佳。为了进一步证实这些发现,用 -PLS选择的某些形态特征波长的SWIR波段对SWIR1和SWIR2最为显著,而 -PLS在可见 - 近红外 - 短波红外波段显示出更均匀的分布。因此,SWIR高光谱波段为开发用于遥感测量以估计植物形态参数的替代波段提供了有价值的见解。这些发现强调了遥感技术在温室中固定高通量表型系统内进行快速、准确和非侵入性监测的潜力。这些见解与数字和精准技术的进步相一致,表明该领域的研究和创新前景广阔。