文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Chitosan-Based Composite Membranes with Different Biocompatible Metal Oxide Nanoparticles: Physicochemical Properties and Drug-Release Study.

作者信息

Baroudi Alia, García-Payo Carmen, Khayet Mohamed

机构信息

Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.

Department of Industrial Engineering, Higher Polytechnic School, University Antonio Nebrija, C/Santa cruz del Marcenado 27, 28015 Madrid, Spain.

出版信息

Polymers (Basel). 2023 Jun 24;15(13):2804. doi: 10.3390/polym15132804.


DOI:10.3390/polym15132804
PMID:37447450
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10347105/
Abstract

Chitosan (CS) composite membranes were prepared using different biocompatible metal oxide nanoparticles (NPs): titanium dioxide (TiO); iron oxide (FeO); and aluminum oxide (AlO). For each nanoparticle, the CS-based composite membranes were prepared with two NPs contents in the CS solution, high (H) and low (L) NPs concentrations. To establish both concentrations, the NPs saturation point in the CS polymeric matrix was determined. The influence of NP concentrations on the physicochemical properties of the CS films was assessed. The prepared CS membranes were characterized with different techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and zeta potential. It was found that the addition of NPs in the CS matrix improved both swelling and mechanical properties. Nanocomposite CS membranes could be prepared using AlO NPs. Swelling experiments revealed different pH-sensitive mechanisms, which might be beneficial in biomedical applications since solute permeation through CS-based composite membranes could be controlled by adjusting environmental conditions. When aspirin transport (ASA) through the prepared membranes was carried out in different release media, SGF (simulating gastric fluid) and SIF (simulating intestinal fluid without enzymes), it was observed that the Fickian diffusion coefficient () was conditioned by the pH of the release solution. In SGIT (simulating gastrointestinal transit) medium, a transition time () was detected due to the shrinkage of the CS polymeric chains, and the drug release depended not only on the Fickian's diffusion but also on the shrinkage of the biopolymer, obeying Peppas and Sahlin equation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/74bf61e57a2f/polymers-15-02804-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/0731fa35224e/polymers-15-02804-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/f6f07031092f/polymers-15-02804-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/07ed3d211377/polymers-15-02804-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/886e141b37c0/polymers-15-02804-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/8e16f3ae30e8/polymers-15-02804-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/4498ddd6cf80/polymers-15-02804-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/a2d5cac8fc20/polymers-15-02804-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/74bf61e57a2f/polymers-15-02804-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/0731fa35224e/polymers-15-02804-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/f6f07031092f/polymers-15-02804-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/07ed3d211377/polymers-15-02804-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/886e141b37c0/polymers-15-02804-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/8e16f3ae30e8/polymers-15-02804-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/4498ddd6cf80/polymers-15-02804-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/a2d5cac8fc20/polymers-15-02804-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c153/10347105/74bf61e57a2f/polymers-15-02804-g008.jpg

相似文献

[1]
Chitosan-Based Composite Membranes with Different Biocompatible Metal Oxide Nanoparticles: Physicochemical Properties and Drug-Release Study.

Polymers (Basel). 2023-6-24

[2]
Biological applications study of bio-nanocomposites based on chitosan/TiO nanoparticles polymeric films modified by oleic acid.

J Biomed Mater Res A. 2021-2

[3]
-Mediated Synthesis and Characterizations of Ciprofloxacin Encapsulated into Ag/TiO/FeO/CS Nanocomposite: A Therapeutic Solution against Multidrug Resistant Strains of Livestock Infectious Diseases.

Pharmaceutics. 2022-8-17

[4]
Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.

Int J Pharm. 2013-8-29

[5]
Chitosan-based DyO/CuFeO bio-nanocomposite development, characterization, and drug release kinetics.

Int J Biol Macromol. 2022-11-1

[6]
Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis.

Colloids Surf B Biointerfaces. 2021-6

[7]
pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties.

Colloids Surf B Biointerfaces. 2005-8

[8]
Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment.

Int J Biol Macromol. 2023-5-15

[9]
Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats.

Eur J Pharm Sci. 2021-10-1

[10]
Controlled release of silica-coated insulin-loaded chitosan nanoparticles as a promising oral administration system.

BMC Pharmacol Toxicol. 2023-3-30

引用本文的文献

[1]
Green Chemically Synthesized Iron Oxide Nanoparticles-Chitosan Coatings for Enhancing Strawberry Shelf-Life.

Polymers (Basel). 2024-11-22

本文引用的文献

[1]
Chitosan Combined with ZnO, TiO₂ and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends.

Polymers (Basel). 2017-1-9

[2]
Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses.

Polymers (Basel). 2018-1-26

[3]
Preparation and characterization of acetylsalicylic acid/chitosan nanoparticles and its antithrombotic effects.

Des Monomers Polym. 2018-10-16

[4]
A review on chitosan and its nanocomposites in drug delivery.

Int J Biol Macromol. 2017-12-14

[5]
Programing stimuli-responsiveness of gelatin with electron beams: basic effects and development of a hydration-controlled biocompatible demonstrator.

Sci Rep. 2017-12-12

[6]
pH sensitive surfactant-stabilized FeO magnetic nanocarriers for dual drug delivery.

Colloids Surf B Biointerfaces. 2017-11-22

[7]
Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields.

Nanomaterials (Basel). 2017-3-31

[8]
Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications.

Carbohydr Polym. 2016-8-1

[9]
Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances.

Mater Today (Kidlington). 2016-4

[10]
pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan.

Carbohydr Polym. 2015-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索