Suppr超能文献

单观测者被动定位中速度向量估计的次优优化策略。

A Suboptimal Optimizing Strategy for Velocity Vector Estimation in Single-Observer Passive Localization.

机构信息

School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China.

The Fifth Institute of Telecommunication Science and Technology, Chengdu 610036, China.

出版信息

Sensors (Basel). 2023 Jun 26;23(13):5940. doi: 10.3390/s23135940.

Abstract

In a single-observer passive localization system, the velocity and position of the target are estimated simultaneously. However, this can lead to correlated errors and distortion of the estimated value, making independent estimation of the speed and position necessary. In this study, we introduce a novel optimization strategy, suboptimal estimation, for independently estimating the velocity vector in single-observer passive localization. The suboptimal estimation strategy converts the estimation of the velocity vector into a search for the global optimal solution by dynamically weighting multiple optimization criteria from the starting point in the solution space. Simulation verification is conducted using uniform motion and constant acceleration models. The results demonstrate that the proposed method converges faster with higher accuracy and strong robustness.

摘要

在单观测者被动定位系统中,同时估计目标的速度和位置。然而,这可能会导致相关误差和估计值的扭曲,因此需要对速度和位置进行独立估计。在这项研究中,我们引入了一种新的优化策略,即次优估计,用于独立估计单观测者被动定位中的速度向量。次优估计策略通过从解空间中的起始点动态地为多个优化标准分配权重,将速度向量的估计转换为对全局最优解的搜索。使用匀速和匀加速模型进行了仿真验证。结果表明,该方法具有更快的收敛速度、更高的精度和较强的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ab/10346755/4b98a7325d2c/sensors-23-05940-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验