Suppr超能文献

在自由生活环境中使用可穿戴传感器和机器学习评估乳腺癌幸存者的上肢功能。

Assessing Upper Limb Function in Breast Cancer Survivors Using Wearable Sensors and Machine Learning in a Free-Living Environment.

机构信息

Department of Rehabilitation Sciences, KU Leuven, B-3000 Leuven, Belgium.

CarEdOn Research Group, B-3000 Leuven, Belgium.

出版信息

Sensors (Basel). 2023 Jul 2;23(13):6100. doi: 10.3390/s23136100.

Abstract

(1) Background: Being able to objectively assess upper limb (UL) dysfunction in breast cancer survivors (BCS) is an emerging issue. This study aims to determine the accuracy of a pre-trained lab-based machine learning model (MLM) to distinguish functional from non-functional arm movements in a home situation in BCS. (2) Methods: Participants performed four daily life activities while wearing two wrist accelerometers and being video recorded. To define UL functioning, video data were annotated and accelerometer data were analyzed using a counts threshold method and an MLM. Prediction accuracy, recall, sensitivity, f1-score, 'total minutes functional activity' and 'percentage functionally active' were considered. (3) Results: Despite a good MLM accuracy (0.77-0.90), recall, and specificity, the f1-score was poor. An overestimation of the 'total minutes functional activity' and 'percentage functionally active' was found by the MLM. Between the video-annotated data and the functional activity determined by the MLM, the mean differences were 0.14% and 0.10% for the left and right side, respectively. For the video-annotated data versus the counts threshold method, the mean differences were 0.27% and 0.24%, respectively. (4) Conclusions: An MLM is a better alternative than the counts threshold method for distinguishing functional from non-functional arm movements. However, the abovementioned wrist accelerometer-based assessment methods overestimate UL functional activity.

摘要

(1) 背景:能够客观评估乳腺癌幸存者(BCS)的上肢(UL)功能障碍是一个新兴问题。本研究旨在确定一种基于实验室的预先训练机器学习模型(MLM)在 BCS 家庭环境中区分功能性和非功能性手臂运动的准确性。 (2) 方法:参与者在佩戴两个腕部加速度计并进行视频记录的情况下进行四项日常生活活动。为了定义 UL 功能,使用计数阈值方法和 MLM 对视频数据进行注释并对加速度计数据进行分析。考虑了预测准确性、召回率、灵敏度、f1 分数、“总分钟功能性活动”和“功能性活动百分比”。 (3) 结果:尽管 MLM 具有较高的准确性(0.77-0.90)、召回率和特异性,但 f1 分数较差。MLM 高估了“总分钟功能性活动”和“功能性活动百分比”。对于视频注释数据和由 MLM 确定的功能性活动,左侧和右侧的平均差异分别为 0.14%和 0.10%。对于视频注释数据与计数阈值方法,平均差异分别为 0.27%和 0.24%。 (4) 结论:与计数阈值方法相比,MLM 是区分功能性和非功能性手臂运动的更好选择。然而,上述基于腕部加速度计的评估方法高估了 UL 功能活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c240/10347074/c21023e950f8/sensors-23-06100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验