Suppr超能文献

基于传感器的偏瘫上肢功能评估框架

A Framework for Sensor-Based Assessment of Upper-Limb Functioning in Hemiparesis.

作者信息

David Ann, Subash Tanya, Varadhan S K M, Melendez-Calderon Alejandro, Balasubramanian Sivakumar

机构信息

Department of Applied Mechanics, Indian Institute of Technology - Madras, Chennai, India.

Department of Bioengineering, Christian Medical College, Vellore, India.

出版信息

Front Hum Neurosci. 2021 Jul 22;15:667509. doi: 10.3389/fnhum.2021.667509. eCollection 2021.

Abstract

The ultimate goal of any upper-limb neurorehabilitation procedure is to improve upper-limb functioning in daily life. While clinic-based assessments provide an assessment of what a patient can do, they do not completely reflect what a patient does in his/her daily life. The use of compensatory strategies such as the use of the less affected upper-limb or excessive use of trunk in daily life is a common behavioral pattern seen in patients with hemiparesis. To this end, there has been an increasing interest in the use of wearable sensors to objectively assess upper-limb functioning. This paper presents a framework for assessing upper-limb functioning using sensors by providing: (a) a set of definitions of important constructs associated with upper-limb functioning; (b) different visualization methods for evaluating upper-limb functioning; and (c) two new measures for quantifying how much an upper-limb is used and the relative bias in their use. The demonstration of some of these components is presented using data collected from inertial measurement units from a previous study. The proposed framework can help guide the future technical and clinical work in this area to realize valid, objective, and robust tools for assessing upper-limb functioning. This will in turn drive the refinement and standardization of the assessment of upper-limb functioning.

摘要

任何上肢神经康复程序的最终目标都是改善患者在日常生活中的上肢功能。虽然基于诊所的评估能够对患者的能力进行评估,但并不能完全反映患者在日常生活中的实际行为。在日常生活中使用代偿策略,如使用受影响较小的上肢或过度使用躯干,是偏瘫患者常见的行为模式。为此,人们对使用可穿戴传感器来客观评估上肢功能的兴趣与日俱增。本文通过提供以下内容,提出了一个使用传感器评估上肢功能的框架:(a) 一组与上肢功能相关的重要概念的定义;(b) 用于评估上肢功能的不同可视化方法;(c) 两种新的测量方法,用于量化上肢的使用程度及其使用中的相对偏差。使用先前研究中从惯性测量单元收集的数据展示了其中一些组件。所提出的框架有助于指导该领域未来的技术和临床工作,以实现用于评估上肢功能的有效、客观和可靠的工具。这反过来又将推动上肢功能评估的完善和标准化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae59/8341809/6b3968eaa446/fnhum-15-667509-g0001.jpg

相似文献

1
A Framework for Sensor-Based Assessment of Upper-Limb Functioning in Hemiparesis.
Front Hum Neurosci. 2021 Jul 22;15:667509. doi: 10.3389/fnhum.2021.667509. eCollection 2021.
2
Upper limb movement profiles during spontaneous motion in acute stroke.
Physiol Meas. 2021 May 11;42(4). doi: 10.1088/1361-6579/abf01e.
4
Comparing algorithms for assessing upper limb use with inertial measurement units.
Front Physiol. 2022 Dec 19;13:1023589. doi: 10.3389/fphys.2022.1023589. eCollection 2022.
6
Inertial Sensor Measurements of Upper-Limb Kinematics in Stroke Patients in Clinic and Home Environment.
Front Bioeng Biotechnol. 2018 Apr 12;6:27. doi: 10.3389/fbioe.2018.00027. eCollection 2018.
8
Assessment of movement disorders using wearable sensors during upper limb tasks: A scoping review.
Front Robot AI. 2023 Jan 9;9:1068413. doi: 10.3389/frobt.2022.1068413. eCollection 2022.
9
A unified scheme for the benchmarking of upper limb functions in neurological disorders.
J Neuroeng Rehabil. 2022 Sep 27;19(1):102. doi: 10.1186/s12984-022-01082-8.
10
Using Wearable Inertial Sensors to Estimate Clinical Scores of Upper Limb Movement Quality in Stroke.
Front Physiol. 2022 May 3;13:877563. doi: 10.3389/fphys.2022.877563. eCollection 2022.

引用本文的文献

2
Temporal localization of upper extremity bilateral synergistic coordination using wearable accelerometers.
PeerJ. 2024 Sep 3;12:e17858. doi: 10.7717/peerj.17858. eCollection 2024.
3
6
Upper extremity asymmetry due to nerve injuries or central neurologic conditions: a scoping review.
J Neuroeng Rehabil. 2023 Nov 9;20(1):151. doi: 10.1186/s12984-023-01277-7.
7
Recognizing hand use and hand role at home after stroke from egocentric video.
PLOS Digit Health. 2023 Oct 11;2(10):e0000361. doi: 10.1371/journal.pdig.0000361. eCollection 2023 Oct.
8
Going beyond PA: Assessing sensorimotor capacity with wearables in multiple sclerosis-a cross-sectional study.
J Neuroeng Rehabil. 2023 Sep 21;20(1):123. doi: 10.1186/s12984-023-01247-z.

本文引用的文献

1
Quantification of the relative arm use in patients with hemiparesis using inertial measurement units.
J Rehabil Assist Technol Eng. 2021 Jul 7;8:20556683211019694. doi: 10.1177/20556683211019694. eCollection 2021 Jan-Dec.
2
Identifying Hand Use and Hand Roles After Stroke Using Egocentric Video.
IEEE J Transl Eng Health Med. 2021 Apr 9;9:2100510. doi: 10.1109/JTEHM.2021.3072347. eCollection 2021.
3
Estimating Movement Smoothness From Inertial Measurement Units.
Front Bioeng Biotechnol. 2021 Jan 14;8:558771. doi: 10.3389/fbioe.2020.558771. eCollection 2020.
4
Improving Accelerometry-Based Measurement of Functional Use of the Upper Extremity After Stroke: Machine Learning Versus Counts Threshold Method.
Neurorehabil Neural Repair. 2020 Dec;34(12):1078-1087. doi: 10.1177/1545968320962483. Epub 2020 Nov 5.
5
Generalizability of Hand-Object Interaction Detection in Egocentric Video across Populations with Hand Impairment.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3228-3231. doi: 10.1109/EMBC44109.2020.9176154.
6
Big behavior: challenges and opportunities in a new era of deep behavior profiling.
Neuropsychopharmacology. 2021 Jan;46(1):33-44. doi: 10.1038/s41386-020-0751-7. Epub 2020 Jun 29.
8
A Taxonomy of Functional Upper Extremity Motion.
Front Neurol. 2019 Aug 20;10:857. doi: 10.3389/fneur.2019.00857. eCollection 2019.
9
Excessive sedentary time during in-patient stroke rehabilitation.
Top Stroke Rehabil. 2018 Jul;25(5):366-374. doi: 10.1080/10749357.2018.1458461. Epub 2018 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验