Suppr超能文献

基于惯性测量单元的三维脊柱曲率估计的神经网络方法。

A Neural Network Approach for Inertial Measurement Unit-Based Estimation of Three-Dimensional Spinal Curvature.

机构信息

Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China.

Laboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong, China.

出版信息

Sensors (Basel). 2023 Jul 3;23(13):6122. doi: 10.3390/s23136122.

Abstract

The spine is an important part of the human body. Thus, its curvature and shape are closely monitored, and treatment is required if abnormalities are detected. However, the current method of spinal examination mostly relies on two-dimensional static imaging, which does not provide real-time information on dynamic spinal behaviour. Therefore, this study explored an easier and more efficient method based on machine learning and sensors to determine the curvature of the spine. Fifteen participants were recruited and performed tests to generate data for training a neural network. This estimated the spinal curvature from the readings of three inertial measurement units and had an average absolute error of 0.261161 cm.

摘要

脊柱是人身体的重要组成部分。因此,它的曲度和形状受到密切监测,如果发现异常,就需要进行治疗。然而,目前的脊柱检查方法主要依赖于二维静态成像,无法提供脊柱动态行为的实时信息。因此,本研究探索了一种基于机器学习和传感器的更简单、更高效的方法,以确定脊柱的曲率。研究招募了 15 名参与者进行测试,以生成数据来训练神经网络。该网络通过三个惯性测量单元的读数来估计脊柱的曲率,平均绝对误差为 0.261161 厘米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验