Suppr超能文献

通过深度学习技术实现全脊柱矢状位排列和曲率的自动识别。

Automatic recognition of whole-spine sagittal alignment and curvature analysis through a deep learning technique.

机构信息

aetherAI Co., Ltd., 9 F., No. 3-2, Park St., Nangang Dist., Taipei, 115, Taiwan.

Spine Division, Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fuxing St., Guishan Dist., Taoyuan, 333, Taiwan.

出版信息

Eur Spine J. 2022 Aug;31(8):2092-2103. doi: 10.1007/s00586-022-07189-9. Epub 2022 Apr 2.

Abstract

PURPOSE

Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system.

METHODS

We developed a DL model for automatic spinal curvature analysis of whole-spine lateral plain radiographs by using 1800 annotated images of various spinal disease etiologies. The DL model comprised a landmark localizer to detect 25 vertebral landmarks and a numerical algorithm for the generation of an individualized spinal sagittal curvature. The characteristics of the spinal curvature, including the IPs, APs, and curvature angle, could thus be analyzed using mathematical definitions. The localization error of each landmark was calculated from the predictions of 300 test images to evaluate the performance of the landmark localizer. The interrater reliability among a senior orthopedic surgeon, a radiologist, and the DL model was assessed using the intraclass correlation coefficient (ICC).

RESULTS

The accuracy of the landmark localizer was within an acceptable range (median error: 1.7-4.1 mm), and the interrater reliabilities between the proposed DL model and each expert were good to excellent (all ICCs > 0.85) for the measurement of spinal curvature characteristics.

CONCLUSION

The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.

摘要

目的

基于深度学习(DL)的人工智能方法能够实现解剖学标志的自动识别,并随后估计各种脊柱骨盆参数。通过全脊柱侧位 X 线片的完全自动脊柱矢状曲度分析系统,可以通过数学方法确定脊柱侧位 X 线片中拐点(IP)和顶点(AP)的位置。

方法

我们通过使用 1800 张各种脊柱疾病病因的标注图像,开发了一种用于全脊柱侧位平片自动脊柱曲度分析的 DL 模型。DL 模型包括一个用于检测 25 个椎体标志的地标定位器和一个用于生成个体化脊柱矢状曲度的数值算法。因此,可以使用数学定义来分析脊柱曲度的特征,包括 IP、AP 和曲率角。从 300 张测试图像的预测中计算每个地标定位器的定位误差,以评估地标定位器的性能。使用组内相关系数(ICC)评估高级骨科医生、放射科医生和 DL 模型之间的组内可靠性。

结果

地标定位器的准确性在可接受的范围内(中位数误差:1.7-4.1mm),并且提出的 DL 模型与每位专家之间的脊柱曲度特征测量的组内可靠性均较好至极好(所有 ICC 均>0.85)。

结论

在预测 IP、AP 和曲率角的位置方面,提出的 DL 模型与人类专家之间的组内可靠性较好至极好。未来应探索该系统的应用,以验证其临床效果并提高其临床效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验