Suppr超能文献

基于堆叠集成算法和自适应阈值的风力发电机组故障诊断

Fault Diagnosis of Wind Turbine Generators Based on Stacking Integration Algorithm and Adaptive Threshold.

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Key Laboratory of Artificial Intelligence in Yunnan Province, Kunming 650500, China.

出版信息

Sensors (Basel). 2023 Jul 6;23(13):6198. doi: 10.3390/s23136198.

Abstract

Fault alarm time lag is one of the difficulties in fault diagnosis of wind turbine generators (WTGs), and the existing methods are insufficient to achieve accurate and rapid fault diagnosis of WTGs, and the operation and maintenance costs of WTGs are too high. To invent a new method for fast and accurate fault diagnosis of WTGs, this study constructs a stacking integration model based on the machine learning algorithms light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), and stochastic gradient descent regressor (SGDRegressor) using publicly available datasets from Energias De Portugal (EDP). This model is automatically tuned for hyperparameters during training using Bayesian tuning, and the coefficient of determination (R) and root mean square error (RMSE) were used to evaluate the model to determine its applicability and accuracy. The fitted residuals of the test set were calculated, the Pauta criterion (3σ) and the temporal sliding window were applied, and a final adaptive threshold method for accurate fault diagnosis and alarming was created. The model validation results show that the adaptive threshold method proposed in this study is better than the fixed threshold for diagnosis, and the alarm times for the GENERATOR fault type, GENERATOR_BEARING fault type, and TRANSFORMER fault type are 1.5 h, 5.8 h, and 3 h earlier, respectively.

摘要

故障报警滞后是风力涡轮发电机组(WTG)故障诊断的难点之一,现有的方法不足以实现 WTG 的准确、快速故障诊断,且 WTG 的运行和维护成本过高。为了发明一种新的 WTG 快速准确故障诊断方法,本研究使用来自葡萄牙能源公司(EDP)的公开数据集,基于机器学习算法轻梯度提升机(LightGBM)、极端梯度提升机(XGBoost)和随机梯度下降回归器(SGDRegressor)构建了一个堆叠集成模型。该模型在训练过程中使用贝叶斯调优自动调整超参数,并使用确定系数(R)和均方根误差(RMSE)来评估模型,以确定其适用性和准确性。计算了测试集的拟合残差,应用了 Pauta 准则(3σ)和时间滑动窗口,并创建了最终的准确故障诊断和报警自适应阈值方法。模型验证结果表明,本研究提出的自适应阈值方法比固定阈值更适合诊断,GENERATOR 故障类型、GENERATOR_BEARING 故障类型和 TRANSFORMER 故障类型的报警时间分别提前了 1.5 h、5.8 h 和 3 h。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c1/10346449/a85db1991ccb/sensors-23-06198-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验