Suppr超能文献

活性氧(ROS)在肿瘤发生和致癌作用中的“双刃剑”效应。

"Double-edged sword" effect of reactive oxygen species (ROS) in tumor development and carcinogenesis.

机构信息

Key Laboratory of Medical Microecology (Putian University), Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian, China.

出版信息

Physiol Res. 2023 Jul 14;72(3):301-307. doi: 10.33549/physiolres.935007.

Abstract

Reactive oxygen species (ROS) are small reactive molecules produced by cellular metabolism and regulate various physiological and pathological functions. Many studies have shown that ROS plays an essential role in the proliferation and inhibition of tumor cells. Different concentrations of ROS can have a "double-edged sword" effect on the occurrence and development of tumors. A certain concentration of ROS can activate growth-promoting signals, enhance the proliferation and invasion of tumor cells, and cause damage to biomacromolecules such as proteins and nucleic acids. However, ROS can enhance the body's antitumor signal at higher levels by initiating oxidative stress-induced apoptosis and autophagy in tumor cells. This review analyzes ROS's unique bidirectional regulation mechanism on tumor cells, focusing on the key signaling pathways and regulatory factors that ROS affect the occurrence and development of tumors and providing ideas for an in-depth understanding of the mechanism of ROS action and its clinical application.

摘要

活性氧(ROS)是细胞代谢产生的具有反应活性的小分子,调节各种生理和病理功能。许多研究表明 ROS 在肿瘤细胞的增殖和抑制中发挥着重要作用。不同浓度的 ROS 对肿瘤的发生和发展具有“双刃剑”效应。一定浓度的 ROS 可以激活促生长信号,增强肿瘤细胞的增殖和侵袭,导致蛋白质和核酸等生物大分子损伤。然而,ROS 可以通过启动氧化应激诱导的肿瘤细胞凋亡和自噬,在更高水平上增强机体的抗肿瘤信号。本文分析了 ROS 对肿瘤细胞的独特双向调节机制,重点探讨了 ROS 影响肿瘤发生和发展的关键信号通路和调节因子,为深入了解 ROS 作用机制及其临床应用提供思路。

相似文献

1
"Double-edged sword" effect of reactive oxygen species (ROS) in tumor development and carcinogenesis.
Physiol Res. 2023 Jul 14;72(3):301-307. doi: 10.33549/physiolres.935007.
2
Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.
Oxid Med Cell Longev. 2016;2016:1616781. doi: 10.1155/2016/1616781. Epub 2016 Jan 3.
3
Redox regulation in cancer: a double-edged sword with therapeutic potential.
Oxid Med Cell Longev. 2010 Jan-Feb;3(1):23-34. doi: 10.4161/oxim.3.1.10095.
4
The double-edged roles of ROS in cancer prevention and therapy.
Theranostics. 2021 Mar 4;11(10):4839-4857. doi: 10.7150/thno.56747. eCollection 2021.
5
MAP17 and the double-edged sword of ROS.
Biochim Biophys Acta. 2012 Aug;1826(1):44-52. doi: 10.1016/j.bbcan.2012.03.004. Epub 2012 Mar 23.
6
Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy.
Biochemistry (Mosc). 2020 Oct;85(10):1254-1266. doi: 10.1134/S0006297920100132.
7
Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.
Oxid Med Cell Longev. 2016;2016:6235641. doi: 10.1155/2016/6235641. Epub 2016 Jun 21.
8
The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer.
Int J Mol Sci. 2019 Oct 26;20(21):5335. doi: 10.3390/ijms20215335.
9
Paradoxical action of reactive oxygen species in creation and therapy of cancer.
Eur J Pharmacol. 2014 Jul 15;735:150-68. doi: 10.1016/j.ejphar.2014.04.023. Epub 2014 Apr 26.
10
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
Chem Biol Interact. 2006 Mar 10;160(1):1-40. doi: 10.1016/j.cbi.2005.12.009. Epub 2006 Jan 23.

引用本文的文献

4
Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances.
Signal Transduct Target Ther. 2025 Jun 11;10(1):190. doi: 10.1038/s41392-025-02253-4.
5
Lifting the veil on tumor metabolism: A GDH1-focused perspective.
iScience. 2025 May 3;28(6):112551. doi: 10.1016/j.isci.2025.112551. eCollection 2025 Jun 20.
6
Reactive Oxygen Species: From Tumorigenesis to Therapeutic Strategies in Cancer.
Cancer Med. 2025 May;14(10):e70947. doi: 10.1002/cam4.70947.
8
Diquat Induces Cell Death and dopamine Neuron Loss via Reactive Oxygen Species Generation in .
Environ Sci Technol. 2025 Jan 14;59(1):152-162. doi: 10.1021/acs.est.4c07783. Epub 2025 Jan 2.
10
Mitochondrial Dysfunction in Systemic Lupus Erythematosus: Insights and Therapeutic Potential.
Diseases. 2024 Sep 23;12(9):226. doi: 10.3390/diseases12090226.

本文引用的文献

2
Cancer statistics, 2022.
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.
3
Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression.
Life Sci. 2021 Nov 1;284:119942. doi: 10.1016/j.lfs.2021.119942. Epub 2021 Sep 10.
4
Oxidative Stress in Cancer Cell Metabolism.
Antioxidants (Basel). 2021 Apr 22;10(5):642. doi: 10.3390/antiox10050642.
5
6
The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies.
Antioxidants (Basel). 2020 Nov 19;9(11):1151. doi: 10.3390/antiox9111151.
9
Ivosidenib, an IDH1 inhibitor, in a patient with recurrent, -mutant glioblastoma: a case report from a Phase I study.
CNS Oncol. 2020 Sep 1;9(3):CNS62. doi: 10.2217/cns-2020-0014. Epub 2020 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验