Suppr超能文献

通过融合提高深致死突变原生质体的再生率,以促进高效 L-赖氨酸发酵。

Improving the regeneration rate of deep lethal mutant protoplasts by fusion to promote efficient L-lysine fermentation.

机构信息

College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.

State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, China.

出版信息

BMC Biotechnol. 2023 Jul 14;23(1):22. doi: 10.1186/s12896-023-00792-8.

Abstract

BACKGROUND

L-lysine is widely used for feed and special diet products. The transformation of fermentation strains plays a decisive role in the development of these industries. Based on the mutation breeding theory and metabolic engineering methods, this study aimed to improve the regeneration rate of high-lethality protoplasts by combining multiple mutagenesis and homologous cell fusion techniques to efficiently concentrate multiple dominant mutations and optimize the L-lysine production strain Escherichia coli QDW.

RESULTS

In order to obtain the best protoplasts, the optimal enzymolysis time was selected as 4 h. The optimal lysozyme concentration was estimated at 0.8 mg/mL, because the protoplast formation rate and regeneration rate reached 90% and 30%, respectively, and their product reached the maximum. In this study, it was necessary that UV mutagenesis be excessive to obtain an expanded mutation library. For high lethality protoplasts, under the premise of minimal influence on its recovery, the optimal time for UV mutagenesis of protoplasts was 7 min, and the optimal time for thermal inactivation of protoplasts at 85 ℃ was 30 min. After homologous fusion, four fusion strains of E. coli were obtained, and their stability was analyzed by flow cytometry. The L-lysine yield of QDW-UH3 increased by 7.2% compared with that of QDW in a fermentation experiment, which promoted the expression of key enzymes in L-lysine synthesis, indicating that the combination of ultraviolet mutagenic breeding and protoplast fusion technology improved the acid-production level of the fusion strain.

CONCLUSION

This method provides a novel approach for the targeted construction of microbial cell factories.

摘要

背景

L-赖氨酸广泛应用于饲料和特殊饮食产品。发酵菌株的转化在这些产业的发展中起着决定性的作用。本研究基于突变育种理论和代谢工程方法,旨在通过结合多次诱变和同源细胞融合技术,提高高致死率原生质体的再生率,有效地集中多个优势突变,并优化 L-赖氨酸生产菌株大肠杆菌 QDW。

结果

为了获得最佳的原生质体,选择最佳的酶解时间为 4 小时。最佳溶菌酶浓度估计为 0.8mg/mL,因为原生质体形成率和再生率分别达到 90%和 30%,其产物达到最大值。在这项研究中,需要过度的 UV 诱变才能获得扩展的突变文库。对于高致死率的原生质体,在对其恢复影响最小的前提下,原生质体 UV 诱变的最佳时间为 7 分钟,85℃原生质体热失活的最佳时间为 30 分钟。同源融合后,获得了四种大肠杆菌融合株,并通过流式细胞术分析其稳定性。与 QDW 相比,QDW-UH3 的 L-赖氨酸产量在发酵实验中提高了 7.2%,这促进了 L-赖氨酸合成关键酶的表达,表明紫外线诱变育种和原生质体融合技术的结合提高了融合株的产酸水平。

结论

该方法为微生物细胞工厂的靶向构建提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f44d/10347866/987acb8a3907/12896_2023_792_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验