School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
COFCO Nutrition & Health Research Institute, Beijing, 102209, China.
Microb Cell Fact. 2022 Apr 22;21(1):68. doi: 10.1186/s12934-022-01795-4.
During fermentation, industrial microorganisms encounter multiple stresses that inhibit cell growth and decrease fermentation yields, in particular acid stress, which is due to the accumulation of acidic metabolites in the fermentation medium. Although the addition of a base to the medium can counteract the effect of acid accumulation, the engineering of acid-tolerant strains is considered a more intelligent and cost-effective solution. While synthetic biology theoretically provides a novel approach for devising such tolerance modules, in practice it is difficult to assemble stress-tolerance modules from hundreds of stress-related genes.
In this study, we designed a set of synthetic acid-tolerance modules for fine-tuning the expression of multi-component gene blocks comprising a member of the proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and reactive oxygen species (ROS) scavengers (sodB and katE). Directed evolution was used to construct an acid-responsive asr promoter library, from which four variants were selected and used in the synthetic modules. The module variants were screened in a stepwise manner under mild acidic conditions (pH 5-6), first by cell growth using the laboratory Escherichia coli strain MG1655 cultured in microplates, and then by lysine production performance using the industrial lysine-producing E. coli strain MG1655 SCEcL3 cultured first in multiple 10-mL micro-bioreactors, and then in 1.3-L parallel bioreactors. The procedure resulted in the identification of a best strain with lysine titer and yield at pH 6.0 comparable to the parent strain at pH 6.8.
Our results demonstrate a promising synthetic-biology strategy to enhance the growth robustness and productivity of E. coli upon the mildly acidic conditions, in both a general lab strain MG1655 and an industrial lysine-producing strain SCEcL3, by using the stress-responsive synthetic acid-tolerance modules comprising a limited number of genes. This study provides a reliable and efficient method for achieving synthetic modules of interest, particularly in improving the robustness and productivity of industrial strains.
在发酵过程中,工业微生物会遇到多种抑制细胞生长和降低发酵产量的压力,特别是酸压力,这是由于发酵培养基中酸性代谢物的积累造成的。虽然向培养基中添加碱可以抵消酸积累的影响,但工程化耐酸菌株被认为是一种更智能、更具成本效益的解决方案。虽然合成生物学理论上为设计这种耐受模块提供了一种新方法,但实际上很难从数百个与应激相关的基因中组装应激耐受模块。
在这项研究中,我们设计了一套合成的耐酸模块,用于微调由质子消耗型酸抗性系统(gadE)成员、周质伴侣(hdeB)和活性氧(ROS)清除剂(sodB 和 katE)组成的多组件基因块的表达。定向进化被用于构建一个酸响应的 asr 启动子文库,从中选择了四个变体并用于合成模块。在温和的酸性条件下(pH5-6),通过细胞生长和赖氨酸生产性能两个步骤,逐步筛选模块变体。在微板中培养的实验室大肠杆菌菌株 MG1655 中进行细胞生长,然后在多个 10-mL 微生物反应器中培养,最后在 1.3-L 平行生物反应器中培养工业赖氨酸生产大肠杆菌菌株 MG1655 SCEcL3,进行赖氨酸生产性能筛选。该程序确定了一种最佳菌株,其在 pH6.0 时的赖氨酸产量和产率与 pH6.8 时的亲本菌株相当。
我们的结果证明了一种有前途的合成生物学策略,通过使用包含有限数量基因的应激响应合成耐酸模块,可以增强大肠杆菌在温和酸性条件下的生长鲁棒性和生产力,无论是在一般实验室菌株 MG1655 还是在工业赖氨酸生产菌株 SCEcL3 中。该研究为实现感兴趣的合成模块提供了一种可靠且高效的方法,特别是在提高工业菌株的鲁棒性和生产力方面。