Gelija Devarajulu, Loka Chadrasekhar, Goddati Mahendra, Bak Na-Hyun, Lee Jaebeom, Kim Moon-Deock
Institute of Quantum Systems (IQS), Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
Department of Advanced Materials Engineering & Smart Natural Space Research Centre, Kongju National University, Cheonan 31080, South Korea.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34883-34894. doi: 10.1021/acsami.3c05141. Epub 2023 Jul 15.
In this study, a Ag/WO/InGaN hybrid heterostructure was successfully developed by sputtering and molecular beam epitaxy techniques, to obtain unique Ag nanospheres adorned with cauliflower-like WO nanostructure over the InGaN nanorods (NRs). Exploiting the localized surface plasmon resonance of Ag, the Ag/WO/InGaN heterostructure exhibited superior photoabsorption ability in the visible region (400-700 nm) of the solar spectrum, with a surface plasmon resonance band centered around 440 nm. Comprehensive analysis through photoluminescence spectroscopy, photocurrent measurements, and electrochemical impedance spectroscopy revealed that the Ag/WO/InGaN hybrid heterostructure significantly enhances the charge carrier separation and transfer kinetics leading to improved overall photoelectrochemical (PEC) performance. The photocurrent density of the Ag/WO/InGaN photoanode is 1.17 mA/cm, which is about 2.72 times higher than that of pure InGaN NRs under visible light irradiation. The photoanode exhibited excellent stability for about 12 h. From the study, it has been found that the maximum applied bias photon-to-current efficiency (ABPE) is ∼1.67% at the applied bias of 0.6 V. The improved PEC water splitting efficiency of the Ag/WO/InGaN photoanode is attributed to the synergistic effects of localized surface plasmon resonance (LSPR), efficient charge carrier separation and transport, and the presence of a Schottky junction. Consequently, the plasmonic metal-assisted heterojunction-based semiconductor Ag/WO/InGaN demonstrates immense potential for practical applications in photoelectrochemical water splitting.
在本研究中,通过溅射和分子束外延技术成功制备了Ag/WO/InGaN混合异质结构,从而在InGaN纳米棒(NRs)上获得了装饰有菜花状WO纳米结构的独特Ag纳米球。利用Ag的局域表面等离子体共振,Ag/WO/InGaN异质结构在太阳光谱的可见光区域(400 - 700 nm)表现出优异的光吸收能力,表面等离子体共振带中心位于440 nm左右。通过光致发光光谱、光电流测量和电化学阻抗谱的综合分析表明,Ag/WO/InGaN混合异质结构显著增强了电荷载流子的分离和转移动力学,从而提高了整体光电化学(PEC)性能。Ag/WO/InGaN光阳极的光电流密度为1.17 mA/cm,在可见光照射下比纯InGaN NRs的光电流密度高约2.72倍。该光阳极在约12小时内表现出优异的稳定性。从研究中发现,在0.6 V的外加偏压下,最大外加偏压光子到电流效率(ABPE)约为1.67%。Ag/WO/InGaN光阳极PEC水分解效率的提高归因于局域表面等离子体共振(LSPR)、高效的电荷载流子分离和传输以及肖特基结的协同效应。因此,基于等离子体金属辅助异质结的半导体Ag/WO/InGaN在光电化学水分解的实际应用中显示出巨大潜力。