State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
J Colloid Interface Sci. 2023 Sep 15;646:745-752. doi: 10.1016/j.jcis.2023.05.102. Epub 2023 May 19.
The novel ternary photoanode was successfully prepared by Bi nanoparticles (Bi NPs) modified on type II heterojunction of WO-ZnWO using the simple and effective drop casting and chemical impregnation methods. The photoelectrochemical (PEC) experimental tests revealed that the photocurrent density of the ternary photoanode of WO/ZnWO(2)/Bi NPs reaches 3.0 mA/cm at 1.23 V (vs. RHE), which is 6 times of the WO photoanode. The incident photon-to-electron conversion efficiency (IPCE) at 380 nm wave length reaches 68%, which increases 2.8 times compared to WO photoanode. The observed enhancement can be attributed to the formation of type II heterojunction and modification of Bi NPs. The former broadens the absorption range for visible light and improves the carrier separation efficiency, while the latter enhances the light capture ability through the local surface plasmon resonance (LSPR) effect of Bi NPs and the generation of hot electrons.
通过简单有效的滴铸和化学浸渍法,在 WO-ZnWO 的 II 型异质结上修饰 Bi 纳米粒子 (Bi NPs),成功制备了新型三元光阳极。光电化学 (PEC) 实验测试表明,WO/ZnWO(2)/Bi NPs 三元光阳极的光电流密度在 1.23 V(相对于 RHE)时达到 3.0 mA/cm,是 WO 光阳极的 6 倍。在 380nm 波长的光电子转换效率(IPCE)达到 68%,与 WO 光阳极相比增加了 2.8 倍。观察到的增强归因于 II 型异质结的形成和 Bi NPs 的修饰。前者拓宽了可见光的吸收范围,提高了载流子分离效率,而后者通过 Bi NPs 的局部表面等离子体共振 (LSPR)效应和热电子的产生增强了光捕获能力。