Arfè Andrea, Muliere Pietro
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center 485 Lexington Ave, 2nd floor New York, NY 10017, United States.
Department of Decision Sciences, Bocconi University, 20136 Milan, Italy.
J Stat Plan Inference. 2023 Jan;222:241-251. doi: 10.1016/j.jspi.2022.07.001. Epub 2022 Jul 14.
We introduce a novel procedure to perform Bayesian non-parametric inference with right-censored data, the . This approximates the posterior law of summaries of the survival distribution (e.g. the mean survival time). More precisely, our procedure approximates the joint posterior law of functionals of the beta-Stacy process, a non-parametric process prior that generalizes the Dirichlet process and that is widely used in survival analysis. The beta-Stacy bootstrap generalizes and unifies other common Bayesian bootstraps for complete or censored data based on non-parametric priors. It is defined by an exact sampling algorithm that does not require tuning of Markov Chain Monte Carlo steps. We illustrate the beta-Stacy bootstrap by analyzing survival data from a real clinical trial.
我们引入了一种用于对右删失数据进行贝叶斯非参数推断的新方法——β-斯泰西自展法。该方法近似生存分布汇总值的后验分布(例如平均生存时间)。更确切地说,我们的方法近似β-斯泰西过程泛函的联合后验分布,β-斯泰西过程是一种非参数过程先验,它推广了狄利克雷过程,并且在生存分析中广泛使用。β-斯泰西自展法基于非参数先验对用于完整数据或删失数据的其他常见贝叶斯自展法进行了推广和统一。它由一种精确抽样算法定义,该算法不需要调整马尔可夫链蒙特卡罗步骤。我们通过分析一项真实临床试验的生存数据来说明β-斯泰西自展法。