Suppr超能文献

具有潜在贝塔增强的广义物种抽样先验。

Generalized species sampling priors with latent Beta reinforcements.

作者信息

Airoldi Edoardo M, Costa Thiago, Bassetti Federico, Leisen Fabrizio, Guindani Michele

机构信息

Department of Statistics at Harvard University and an Alfred P. Sloan Research Fellow.

School of Engineering and Applied Sciences at Harvard University.

出版信息

J Am Stat Assoc. 2014 Dec 1;109(508):1466-1480. doi: 10.1080/01621459.2014.950735.

Abstract

Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.

摘要

许多流行的贝叶斯非参数先验可以根据可交换物种抽样序列来表征。然而,在某些应用中,可交换性可能并不合适。我们引入了一个新颖的、概率上连贯的不可交换物种抽样序列族,其特征在于具有由独立贝塔随机变量序列驱动权重的易于处理的预测概率函数。我们将它们的理论聚类特性与狄利克雷过程和两参数泊松 - 狄利克雷过程的特性进行比较。与现有工作不同,所提出的构造提供了联合过程的完整表征。然后,我们建议在分层贝叶斯建模框架中使用这种过程作为先验分布,并描述了一种用于后验推断的马尔可夫链蒙特卡罗采样器。我们在模拟研究中评估了先验的性能以及所得推断的稳健性,并与流行的狄利克雷过程混合模型和隐马尔可夫模型进行了比较。最后,我们通过利用阵列比较基因组杂交(array CGH)数据开发了一个用于检测乳腺癌染色体畸变的应用。

相似文献

1
Generalized species sampling priors with latent Beta reinforcements.
J Am Stat Assoc. 2014 Dec 1;109(508):1466-1480. doi: 10.1080/01621459.2014.950735.
2
Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process?
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):212-29. doi: 10.1109/TPAMI.2013.217.
3
Latent Nested Nonparametric Priors (with Discussion).
Bayesian Anal. 2019 Dec;14(4):1303-1356. doi: 10.1214/19-BA1169. Epub 2019 Jun 27.
4
Identifying the Recurrence of Sleep Apnea Using A Harmonic Hidden Markov Model.
Ann Appl Stat. 2021 Sep;15(3):1171-1193. doi: 10.1214/21-AOAS1455.
5
Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling.
Appl Radiat Isot. 2023 Apr;194:110691. doi: 10.1016/j.apradiso.2023.110691. Epub 2023 Jan 24.
6
A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.
J Neurosci Methods. 2016 Apr 1;263:36-47. doi: 10.1016/j.jneumeth.2016.01.022. Epub 2016 Feb 5.
7
Bayesian mixture modeling using a hybrid sampler with application to protein subfamily identification.
Biostatistics. 2010 Jan;11(1):18-33. doi: 10.1093/biostatistics/kxp033. Epub 2009 Aug 20.
8
Generalized cumulative shrinkage process priors with applications to sparse Bayesian factor analysis.
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220148. doi: 10.1098/rsta.2022.0148. Epub 2023 Mar 27.
9
On species sampling sequences induced by residual allocation models.
J Stat Plan Inference. 2015 Feb;157-158:108-120. doi: 10.1016/j.jspi.2014.08.008.

引用本文的文献

1
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors.
Bayesian Anal. 2024 Dec;19(4):1067-1095. doi: 10.1214/23-ba1380. Epub 2023 May 2.
2
Bayesian Modeling of Sequential Discoveries.
J Am Stat Assoc. 2023;118(544):2521-2532. doi: 10.1080/01621459.2022.2060835. Epub 2022 May 13.
3
A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data.
J Am Stat Assoc. 2018;113(521):134-151. doi: 10.1080/01621459.2017.1379404. Epub 2018 May 16.
4
Random Partition Distribution Indexed by Pairwise Information.
J Am Stat Assoc. 2017;112(518):721-732. doi: 10.1080/01621459.2016.1165103. Epub 2017 Apr 12.
5
Time-dependence of graph theory metrics in functional connectivity analysis.
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.

本文引用的文献

1
False Discovery Control in Large-Scale Spatial Multiple Testing.
J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):59-83. doi: 10.1111/rssb.12064.
2
Defining Predictive Probability Functions for Species Sampling Models.
Stat Sci. 2013;28(2):209-222. doi: 10.1214/12-sts407.
3
Nonparametric Bayesian models through probit stick-breaking processes.
Bayesian Anal. 2011 Mar 1;6(1). doi: 10.1214/11-BA605.
4
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
Nature. 2012 Apr 18;486(7403):346-52. doi: 10.1038/nature10983.
5
Bayesian Hidden Markov Modeling of Array CGH Data.
J Am Stat Assoc. 2008 Jun 1;103(482):485-497. doi: 10.1198/016214507000000923.
6
Bayesian hierarchical mixture modeling to assign copy number from a targeted CNV array.
Genet Epidemiol. 2011 Sep;35(6):536-48. doi: 10.1002/gepi.20604. Epub 2011 Jul 18.
7
Bayesian Nonparametric Hidden Markov Models with application to the analysis of copy-number-variation in mammalian genomes.
J R Stat Soc Series B Stat Methodol. 2011 Jan 1;73(1):37-57. doi: 10.1111/j.1467-9868.2010.00756.x.
8
Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data.
J Am Stat Assoc. 2010 Dec;105(492):1358-1375. doi: 10.1198/jasa.2010.ap09250.
9
Random Partition Models with Regression on Covariates.
J Stat Plan Inference. 2010 Oct 1;140(10):2801-2808. doi: 10.1016/j.jspi.2010.03.002.
10
A latent class model with hidden Markov dependence for array CGH data.
Biometrics. 2009 Dec;65(4):1296-305. doi: 10.1111/j.1541-0420.2009.01226.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验