Suppr超能文献

可忽略性与粗略数据:一些生物医学实例

Ignorability and coarse data: some biomedical examples.

作者信息

Heitjan D F

机构信息

Center for Biostatistics and Epidemiology, Pennsylvania State University College of Medicine, Hershey 17033.

出版信息

Biometrics. 1993 Dec;49(4):1099-109.

PMID:8117903
Abstract

Heitjan and Rubin (1991, Annals of Statistics 19, 2244-2253) define data to be "coarse" when one observes not the exact value of the data but only some set (a subset of the sample space) that contains the exact value. This definition covers a number of incomplete-data problems arising in biomedicine, including rounded, heaped, censored, and missing data. In analyzing coarse data, it is common to proceed as though the degree of coarseness is fixed in advance--in a word, to ignore the randomness in the coarsening mechanism. When coarsening is actually stochastic, however, inferences that ignore this randomness may be seriously misleading. Heitjan and Rubin (1991) have proposed a general model of data coarsening and established conditions under which it is appropriate to ignore the stochastic nature of the coarsening. The conditions are that the data be coarsened at random [a generalization of missing at random (Rubin, 1976, Biometrika 63, 581-592)] and that the parameters of the data and the coarsening process be distinct. This article presents detailed applications of the general model and the ignorability conditions to a variety of coarse-data problems arising in biomedical statistics. A reanalysis of the Stanford Heart Transplant Data (Crowley and Hu, 1977, Journal of the American Statistical Association 72, 27-36) reveals significant evidence that censoring of pretransplant survival times by transplantation was nonignorable, suggesting a greater benefit from cardiac transplantation than previous analyses had found.

摘要

海特扬和鲁宾(1991年,《统计学年鉴》第19卷,2244 - 2253页)将数据定义为“粗化的”,当人们观察到的不是数据的精确值,而只是包含精确值的某个集合(样本空间的一个子集)时。这个定义涵盖了生物医学中出现的一些不完全数据问题,包括四舍五入、堆积、删失和缺失数据。在分析粗化数据时,通常的做法是假设粗化程度是预先固定的——简而言之,就是忽略粗化机制中的随机性。然而,当粗化实际上是随机的时候,忽略这种随机性的推断可能会产生严重误导。海特扬和鲁宾(1991年)提出了一个数据粗化的通用模型,并确立了在哪些条件下可以忽略粗化的随机性是合适的。这些条件是数据是随机粗化的[随机缺失的一种推广(鲁宾,1976年,《生物统计学》第63卷,581 - 592页)],并且数据的参数和粗化过程的参数是不同的。本文展示了该通用模型和可忽略性条件在生物医学统计学中出现的各种粗化数据问题上的详细应用。对斯坦福心脏移植数据(克劳利和胡,1977年,《美国统计协会杂志》第72卷,27 - 36页)的重新分析揭示了显著证据,表明移植对移植前存活时间的删失是不可忽略的,这表明心脏移植的益处比之前的分析所发现的更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验