Suppr超能文献

用于FLASH放射治疗研究的旋转阳极X射线管的剂量学特性

Dosimetric characterization of a rotating anode x-ray tube for FLASH radiotherapy research.

作者信息

Miles Devin, Sforza Daniel, Wong John, Rezaee Mohammad

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Med Phys. 2024 Feb;51(2):1474-1483. doi: 10.1002/mp.16609. Epub 2023 Jul 17.

Abstract

PURPOSE

Most current research toward ultra-high dose rate (FLASH) radiation is conducted with advanced proton and electron accelerators, which are of limited accessibility to basic laboratory research. An economical alternative to charged particle accelerators is to employ high-capacity rotating anode x-ray tubes to produce kilovoltage x-rays at FLASH dose rates at short source-to-surface distances (SSD). This work describes a comprehensive dosimetric evaluation of a rotating anode x-ray tube for potential application in laboratory FLASH study.

METHODS AND MATERIALS

A commercially available high-capacity fluoroscopy x-ray tube with 75 kW input power was implemented as a potential FLASH irradiator. Radiochromic EBT3 film and thermoluminescent dosimeters (TLDs) were used to investigate the effects of SSD and field size on dose rates and depth-dose characteristics in kV-compatible solid water phantoms. Custom 3D printed accessories were developed to enable reproducible phantom setup at very short SSD. Open and collimated radiation fields were assessed.

RESULTS

Despite the lower x-ray energy and short SSD used, FLASH dose rates above 40 Gy/s were achieved for targets up to 10-mm depth in solid water. Maximum surface dose rates of 96 Gy/s were measured in the open field at 47 mm SSD. A non-uniform high-to-low dose gradient was observed in the planar dose distribution, characteristic of anode heel effects. With added collimation, beams up to 10-mm diameter with reasonable uniformity can be produced. Typical 80%-20% penumbra in the collimated x-ray FLASH beams were less than 1 mm at 5-mm depth in phantom. Ramp-up times at the maximum input current were less than 1 ms.

CONCLUSION

Our dosimetric characterization demonstrates that rotating anode x-ray tube technology is capable of producing radiation beams in support of preclinical FLASH radiobiology research.

摘要

目的

目前大多数关于超高剂量率(FLASH)辐射的研究是使用先进的质子和电子加速器进行的,而这些加速器在基础实验室研究中的可及性有限。一种替代带电粒子加速器的经济方法是使用高容量旋转阳极X射线管,以在短源皮距(SSD)下产生FLASH剂量率的千伏X射线。这项工作描述了对旋转阳极X射线管在实验室FLASH研究中的潜在应用进行的全面剂量学评估。

方法和材料

使用一台输入功率为75kW的市售高容量荧光透视X射线管作为潜在的FLASH辐照器。使用放射变色EBT3薄膜和热释光剂量计(TLD)来研究SSD和射野大小对千伏兼容固体水模体中剂量率和深度剂量特性的影响。开发了定制的3D打印配件,以在非常短的SSD下实现可重复的模体设置。评估了开放和准直辐射野。

结果

尽管使用的X射线能量较低且SSD较短,但在固体水中深度达10mm的靶区实现了高于40Gy/s的FLASH剂量率。在SSD为47mm的开放野中测得的最大表面剂量率为96Gy/s。在平面剂量分布中观察到从高到低的不均匀剂量梯度,这是阳极足跟效应的特征。通过增加准直,可以产生直径达10mm且均匀性合理的射束。在模体中5mm深度处,准直X射线FLASH射束的典型80%-20%半值层小于1mm。在最大输入电流时的上升时间小于1ms。

结论

我们的剂量学表征表明,旋转阳极X射线管技术能够产生辐射束,以支持临床前FLASH放射生物学研究。

相似文献

1
Dosimetric characterization of a rotating anode x-ray tube for FLASH radiotherapy research.
Med Phys. 2024 Feb;51(2):1474-1483. doi: 10.1002/mp.16609. Epub 2023 Jul 17.
2
Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research.
Phys Med Biol. 2021 Apr 23;66(9). doi: 10.1088/1361-6560/abf2fa.
3
FLASH Effects Induced by Orthovoltage X-Rays.
Int J Radiat Oncol Biol Phys. 2023 Nov 15;117(4):1018-1027. doi: 10.1016/j.ijrobp.2023.06.006. Epub 2023 Jun 25.
5
Dosimetry of a novel converging X-ray source for kilovoltage radiotherapy.
Med Phys. 2021 Oct;48(10):5947-5958. doi: 10.1002/mp.15167. Epub 2021 Aug 25.
6
On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates.
Med Phys. 2019 Dec;46(12):5690-5695. doi: 10.1002/mp.13858. Epub 2019 Oct 23.
9
Characteristics of very high-energy electron beams for the irradiation of deep-seated targets.
Med Phys. 2021 Jul;48(7):3958-3967. doi: 10.1002/mp.14891. Epub 2021 May 16.

引用本文的文献

1
A Feasibility Study of Preclinical Ocular X-Ray FLASH Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2025 Jun 28. doi: 10.1016/j.ijrobp.2025.06.3883.
2
The evolution of FLASH radiotherapy: a bibliometric analysis.
Front Oncol. 2025 May 15;15:1580848. doi: 10.3389/fonc.2025.1580848. eCollection 2025.
3
FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application.
Int J Mol Sci. 2024 Nov 21;25(23):12506. doi: 10.3390/ijms252312506.
4
The Potential and Challenges of Proton FLASH in Head and Neck Cancer Reirradiation.
Cancers (Basel). 2024 Sep 24;16(19):3249. doi: 10.3390/cancers16193249.
5
Effect of Ultrahigh Dose Rate on Biomolecular Radiation Damage.
Radiat Res. 2024 Dec 1;202(6):825-836. doi: 10.1667/RADE-24-00100.1.
6
7
FLASH Effects Induced by Orthovoltage X-Rays.
Int J Radiat Oncol Biol Phys. 2023 Nov 15;117(4):1018-1027. doi: 10.1016/j.ijrobp.2023.06.006. Epub 2023 Jun 25.

本文引用的文献

1
FLASH Effects Induced by Orthovoltage X-Rays.
Int J Radiat Oncol Biol Phys. 2023 Nov 15;117(4):1018-1027. doi: 10.1016/j.ijrobp.2023.06.006. Epub 2023 Jun 25.
4
FLASH radiotherapy with photon beams.
Med Phys. 2022 Mar;49(3):2055-2067. doi: 10.1002/mp.15222. Epub 2021 Nov 7.
5
FLASH Proton Radiotherapy Spares Normal Epithelial and Mesenchymal Tissues While Preserving Sarcoma Response.
Cancer Res. 2021 Sep 15;81(18):4808-4821. doi: 10.1158/0008-5472.CAN-21-1500. Epub 2021 Jul 28.
6
FLASH Radiotherapy: History and Future.
Front Oncol. 2021 May 25;11:644400. doi: 10.3389/fonc.2021.644400. eCollection 2021.
7
Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research.
Phys Med Biol. 2021 Apr 23;66(9). doi: 10.1088/1361-6560/abf2fa.
9
Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review.
Phys Med Biol. 2020 Dec 4;65(23):23TR03. doi: 10.1088/1361-6560/abaa28.
10
Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?
Front Oncol. 2020 Jan 17;9:1563. doi: 10.3389/fonc.2019.01563. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验