Esplen Nolan, Egoriti Luca, Paley Bill, Planche Thomas, Hoehr Cornelia, Gottberg Alexander, Bazalova-Carter Magdalena
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
Phys Med Biol. 2022 May 12;67(10). doi: 10.1088/1361-6560/ac5ed6.
To develop a bremsstrahlung target and megavoltage (MV) x-ray irradiation platform for ultrahigh dose-rate (UHDR) irradiation of small-animals on the Advanced Rare Isotope Laboratory (ARIEL) electron linac (e-linac) at TRIUMF.
An electron-to-photon converter design for UHDR radiotherapy (RT) was centered around optimization of a tantalum-aluminum (Ta-Al) explosion-bonded target. Energy deposition within a homogeneous water-phantom and the target itself were evaluated using EGSnrc and FLUKA MC codes, respectively, for various target thicknesses (0.5-1.5 mm), beam energies (= 8, 10 MeV) and electron (Gaussian) beam sizes (2σ= 2-10 mm). Depth dose-rates in a 3D-printed mouse phantom were also calculated to infer the compatibility of the 10 MV dose distributions for FLASH-RT in small-animal models. Coupled thermo-mechanical FEA simulations in ANSYS were subsequently used to inform the stress-strain conditions and fatigue life of the target assembly.
Dose-rates of up to 128 Gy sat the phantom surface, or 85 Gy sat 1 cm depth, were obtained for a 1 × 1 cmfield size, 1 mm thick Ta target and 7.5 cm source-to-surface distance using the FLASH-mode beam (= 10 MeV, 2σ= 5 mm, = 1 kW); furthermore, removal of the collimation assembly and using a shorter (3.5 cm) SSD afforded dose-rates >600 Gy s, albeit at the expense of field conformality. Target temperatures were maintained below the tantalum, aluminum and cooling-water thresholds of 2000 °C, 300 °C and 100 °C, respectively, while the aluminum strain behavior remained everywhere elastic and helped ensure the converter survives its prescribed 5 yr operational lifetime.
Effective design iteration, target cooling and failure mitigation have culminated in a robust target compatible with intensive transient (FLASH) and steady-state (diagnostic) applications. The ARIEL UHDR photon source will facilitate FLASH-RT experiments concerned with sub-second, pulsed or continuous beam irradiations at dose rates in excess of 40 Gy s.
在加拿大 TRIUMF 实验室的先进稀有同位素实验室(ARIEL)电子直线加速器(e - linac)上,开发一种用于小动物超高剂量率(UHDR)辐照的轫致辐射靶和兆伏(MV)级 X 射线辐照平台。
用于 UHDR 放射治疗(RT)的电子 - 光子转换器设计主要围绕钽 - 铝(Ta - Al)爆炸结合靶的优化展开。分别使用 EGSnrc 和 FLUKA 蒙特卡罗(MC)代码,针对各种靶厚度(0.5 - 1.5 毫米)、束流能量(= 8、10 兆电子伏特)和电子(高斯)束尺寸(2σ = 2 - 10 毫米),评估均匀水模体和靶本身内部的能量沉积。还计算了 3D 打印小鼠模体中的深度剂量率,以推断小动物模型中用于 FLASH - RT 的 10 MV 剂量分布的兼容性。随后在 ANSYS 中进行耦合热 - 机械有限元分析(FEA)模拟,以了解靶组件的应力 - 应变条件和疲劳寿命。
对于 1×1 平方厘米的射野尺寸、1 毫米厚的 Ta 靶以及 7.5 厘米的源皮距,使用 FLASH 模式束(= 10 兆电子伏特,2σ = 5 毫米,= 1 千瓦)时,在模体表面获得了高达 128 戈瑞/秒的剂量率,在 1 厘米深度处为 85 戈瑞/秒;此外,移除准直组件并使用更短的(3.5 厘米)源皮距可提供大于 600 戈瑞/秒的剂量率,尽管这是以射野适形性为代价的。靶温度分别保持在钽、铝和冷却水的阈值 2000℃、300℃和 100℃以下,同时铝的应变行为在各处均保持弹性,并有助于确保转换器在规定的 5 年使用寿命内正常运行。
有效的设计迭代、靶冷却和故障缓解措施最终形成了一种坚固的靶,适用于高强度瞬态(FLASH)和稳态(诊断)应用。ARIEL 的 UHDR 光子源将有助于开展与剂量率超过 40 戈瑞/秒的亚秒级、脉冲或连续束辐照相关的 FLASH - RT 实验。