Suppr超能文献

“纳米森林”在三维界面中保持超薄水层以调节能量流,从而提高太阳能蒸发效率。

Ultrathin Water Layer Conservation by "Nano-forest" in a Three-Dimensional Interface Regulates Energy Flow to Boost Solar Evaporation.

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.

出版信息

Environ Sci Technol. 2023 Jul 25;57(29):10652-10661. doi: 10.1021/acs.est.3c02454. Epub 2023 Jul 17.

Abstract

Solar-driven interfacial evaporation technology utilizes materials to form a thin layer on the water's surface, absorbs sunlight on this layer, completes the light-to-heat conversion, heats up the water, and vaporizes it. This greatly reduces energy loss to bulk water and greatly improves the evaporation rate for producing clean water. Additionally, three-dimensional (3D) evaporators are increasingly being applied in this field, and the cold surface generated by the rapid evaporation in the 3D evaporator can utilize environmental heat to achieve a net energy gain for the system. Both strategies improve the evaporation rate of the system, but 3D materials typically have high water contents and cannot avoid energy flow into non-evaporated water. To address this, we introduce the advantages of interfacial evaporation into 3D evaporation by constructing an evaporator with a highly conductive copper core skeleton and an outer layer of ultrathin water and by reasonably constructing interconnected evaporation frameworks. Investigating and optimizing the mutual influence of the ultrathin water layer on the framework, an evaporator with 40 pores per inch (ppi) can reach a maximum of 24.4 kg·m h, indicating that 3D interfacial evaporators with ultrathin water layers concentrate energy flow to stimulate high evaporation rates. This strategy will promote the development of photothermal evaporation technology.

摘要

太阳能驱动界面蒸发技术利用材料在水面上形成一层薄膜,在这层薄膜上吸收阳光,完成光到热的转换,加热水并使其蒸发。这大大减少了向体相水的能量损失,极大地提高了生产清洁水的蒸发速率。此外,三维(3D)蒸发器在该领域的应用越来越广泛,3D 蒸发器中快速蒸发产生的冷表面可以利用环境热量为系统实现净能量增益。这两种策略都提高了系统的蒸发速率,但 3D 材料通常具有较高的含水量,并且无法避免能量流入未蒸发的水中。为了解决这个问题,我们通过构建一个具有高导电性铜芯骨架和超薄水外层的蒸发器,并合理构建相互连接的蒸发框架,将界面蒸发的优势引入到 3D 蒸发中。研究和优化超薄水层对框架的相互影响,每英寸 40 个孔(ppi)的蒸发器可以达到 24.4kg·m h 的最大值,这表明具有超薄水层的 3D 界面蒸发器将能量流集中起来以刺激高蒸发速率。该策略将促进光热蒸发技术的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验