Huang Erwei, Liu Ping
Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.
J Phys Chem Lett. 2023 Jul 27;14(29):6556-6563. doi: 10.1021/acs.jpclett.3c01525. Epub 2023 Jul 17.
Direct methane conversion to methanol has been considered as an effective and economic way to address greenhouse effects and the current high demand for methanol in industry. However, the process has long been challenging due to lack of viable catalysts to compromise the activation of methane that typically occurs at high temperatures and retaining of produced methanol that requires mild conditions. This Perspective demonstrates an effective strategy to promote direct methane to methanol conversion by engineering the active sites and chemical environments at complex metal oxide - copper oxide - copper interfaces. Such effort strongly depends on extensive theoretical studies by combining density functional theory (DFT) calculations and kinetic Monte Carlo (KMC) simulations to provide in-depth understanding of reaction mechanism and active sites, which build a strong basis to enable the identification of design principles and advance the catalyst optimization for selective CH-to-CHOH conversion.
将甲烷直接转化为甲醇被认为是应对温室效应以及满足当前工业对甲醇高需求的一种有效且经济的方式。然而,由于缺乏可行的催化剂来兼顾通常在高温下发生的甲烷活化以及需要温和条件的生成甲醇的保留,该过程长期以来一直具有挑战性。这篇综述展示了一种通过设计复杂金属氧化物 - 氧化铜 - 铜界面处的活性位点和化学环境来促进甲烷直接转化为甲醇的有效策略。这种努力很大程度上依赖于结合密度泛函理论(DFT)计算和动力学蒙特卡罗(KMC)模拟的广泛理论研究,以深入了解反应机理和活性位点,这为确定设计原则和推进用于选择性CH转化为CHOH的催化剂优化奠定了坚实基础。