Department of Chemistry and Biochemistry, Duquesne University, USA.
School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, USA.
Chem Commun (Camb). 2023 Jul 6;59(55):8488-8503. doi: 10.1039/d3cc01733h.
Converting CO to valuable chemicals through a variety of thermal, photo-, and electro-catalytic reaction processes will reduce the net CO emission and contribute positively to the "net-zero" goal. C and C products are important chemical feedstocks and can be produced from the effective catalytic conversion of CO. The key to developing effective CO conversion catalysts is an understanding of CO interaction and the elementary bond-breaking and formation steps on the active catalysts. Over the past two decades, density functional theory-based approaches have enabled both mechanistic understanding and catalyst design for CO activation and conversion. In this article, we review our recent effort in understanding the mechanism of CO activation and conversion, focusing on the unique role of the metal/metal oxide interfaces in both thermal and electrochemical catalytic CO reduction. We showed that InO-based catalysts exhibited a uniquely high methanol selectivity while suppressing CO formation from the reverse water-gas shift reaction. We have also demonstrated that the metal/metal-oxide interfaces can be tuned by selecting an appropriate metal and metal oxide to optimize its activity and selectivity for both thermal- and electro-catalytic reduction of CO. The oxophilicity of the metal in the metal oxide can be used as a qualitative measure for determining the selectivity towards CHOH or CH in the electro-catalytic reduction of CO. The studies demonstrated the impact of the density functional theory-based atomic-level approaches in unravelling the reaction mechanism and predicting highly efficient catalysts and catalytic systems.
通过各种热、光和电催化反应过程将 CO 转化为有价值的化学品将减少净 CO 排放,并为“净零”目标做出积极贡献。C 和 C 产品是重要的化学原料,可通过 CO 的有效催化转化来生产。开发有效 CO 转化催化剂的关键是了解 CO 在活性催化剂上的相互作用以及基本键的断裂和形成步骤。在过去的二十年中,基于密度泛函理论的方法使 CO 活化和转化的机理理解和催化剂设计成为可能。在本文中,我们回顾了我们最近在理解 CO 活化和转化机制方面的努力,重点介绍了金属/金属氧化物界面在热和电化学催化 CO 还原中的独特作用。我们表明,基于 InO 的催化剂表现出独特的高甲醇选择性,同时抑制了逆水气变换反应中 CO 的形成。我们还证明,通过选择合适的金属和金属氧化物,可以调变金属/金属-氧化物界面,以优化其对热催化和电化学还原 CO 的活性和选择性。金属氧化物中金属的亲氧性可用作定性衡量标准,以确定 CO 电化学还原中 CHOH 或 CH 的选择性。这些研究证明了基于密度泛函理论的原子级方法在揭示反应机制和预测高效催化剂和催化体系方面的影响。