Suppr超能文献

通过水将甲烷选择性转化为甲醇的工程化钯金/氧化铈合金/氧化物界面

Engineering PdAu/CeO Alloy/Oxide Interfaces for Selective Methane-to-Methanol Conversion with Water.

作者信息

Fernández-Villanueva Estefanía, Ramírez Pedro J, Lustemberg Pablo G, Pérez Rubén, Ganduglia-Pirovano M Verónica, Rodriguez José A

机构信息

Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain.

Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049, Spain.

出版信息

Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202505716. doi: 10.1002/anie.202505716. Epub 2025 Jul 24.

Abstract

The direct conversion of methane-to-methanol remains a critical challenge in methane valorization. In this study, we unveil the crucial role of PdAu/CeO catalysts in enabling selective methane transformation under mild conditions, using only water as the sole oxidant. Through a combination of experimental techniques, including XPS and catalytic testing, alongside density functional theory (DFT) calculations, we demonstrate that a PdAu/CeO catalyst, which predominantly exposes isolated Pd atoms, achieves remarkable methanol selectivity (∼80%) at 500 K with a 1:1 methane-to-water ratio. While Pd/CeO efficiently activates methane, its tendency for overreaction leads to complete methanol decomposition, thereby limiting selectivity. Alloying Pd with Au on ceria mitigates this over-reactivity, preventing methanol degradation while maintaining sufficient catalytic activity. The PdAu/CeO composite exhibits a synergistic effect: Pd in contact with the ceria support facilitates methane activation and water dissociation, while Au fine-tunes reactivity to promote methanol formation. DFT calculations confirm that isolated Pd sites at the PdAu/CeO interface play a key role in balancing activity and selectivity. This work underscores the importance of alloy/oxide interfaces in controlling selective methane conversion with water and offers valuable insights for designing highly efficient catalysts for methanol synthesis.

摘要

甲烷直接转化为甲醇仍然是甲烷增值领域的一项关键挑战。在本研究中,我们揭示了PdAu/CeO催化剂在温和条件下实现选择性甲烷转化中的关键作用,该过程仅使用水作为唯一氧化剂。通过结合包括XPS和催化测试在内的实验技术以及密度泛函理论(DFT)计算,我们证明,主要暴露孤立Pd原子的PdAu/CeO催化剂在甲烷与水比例为1:1、500 K的条件下可实现显著的甲醇选择性(约80%)。虽然Pd/CeO能有效活化甲烷,但其过度反应的倾向会导致甲醇完全分解,从而限制了选择性。在氧化铈上将Pd与Au合金化可减轻这种过度反应性,防止甲醇降解,同时保持足够的催化活性。PdAu/CeO复合材料表现出协同效应:与氧化铈载体接触的Pd有助于甲烷活化和水离解,而Au则微调反应性以促进甲醇生成。DFT计算证实,PdAu/CeO界面处的孤立Pd位点在平衡活性和选择性方面起关键作用。这项工作强调了合金/氧化物界面在用水控制选择性甲烷转化中的重要性,并为设计高效甲醇合成催化剂提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验