State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
Microbiol Spectr. 2023 Aug 17;11(4):e0046023. doi: 10.1128/spectrum.00460-23. Epub 2023 Jul 17.
Increasing evidence shows that protein lysine acetylation is involved in almost every aspect of cellular physiology in bacteria. Yersinia pestis is a flea-borne pathogen responsible for millions of human deaths in three global pandemics. However, the functional role of lysine acetylation in this pathogen remains unclear. Here, we found more acetylated proteins and a higher degree of acetylation in Y. pestis grown under mammalian host (Mh) conditions than under flea vector (Fv) conditions, suggesting that protein acetylation could significantly change during fleabite transmission. Comparative acetylome analysis of mutants of YfiQ and CobB, the major acetyltransferase and deacetylase of Y. pestis, respectively, identified 23 YfiQ-dependent and 315 CobB-dependent acetylated proteins. Further results demonstrated that acetylation of Lys73 of the SlyA protein, a MarR-family transcriptional regulator, inhibits its binding to the promoter of target genes, including that encodes diguanylate cyclase responsible for the synthesis of c-di-GMP, and significantly enhances biofilm formation of Y. pestis. Our study presents the first extensive acetylome data of Y. pestis and a critical resource for the functional study of lysine acetylation in this pathogen. Yersinia pestis is the etiological agent of plague, historically responsible for three global pandemics. The 2017 plague epidemic in Madagascar was a reminder that Y. pestis remains a real threat in many parts of the world. Plague is a zoonotic disease that primarily infects rodents via fleabite, and transmission of Y. pestis from infected fleas to mammals requires rapid adaptive responses to adverse host environments to establish infection. Our study provides the first global profiling of lysine acetylation derived from mass spectrometry analysis in Y. pestis. Our data set can serve as a critical resource for the functional study of lysine acetylation in Y. pestis and provides new molecular insight into the physiological role of lysine acetylation in proteins. More importantly, we found that acetylation of Lys73 of SlyA significantly promotes biofilm formation of Y. pestis, indicating that bacteria can use lysine acetylation to fine-tune the expression of genes to improve adaptation.
越来越多的证据表明,蛋白质赖氨酸乙酰化参与了细菌细胞生理的几乎各个方面。鼠疫耶尔森菌是一种通过跳蚤传播的病原体,曾在三次全球大流行中导致数百万人死亡。然而,赖氨酸乙酰化在这种病原体中的功能作用尚不清楚。在这里,我们发现,在哺乳动物宿主(Mh)条件下生长的鼠疫耶尔森菌中的乙酰化蛋白更多,乙酰化程度更高,而在跳蚤载体(Fv)条件下则较低,这表明在跳蚤叮咬传播过程中,蛋白质乙酰化可能会发生显著变化。对 YfiQ 和 CobB 突变体的比较乙酰组分析,分别是鼠疫耶尔森菌的主要乙酰转移酶和脱乙酰酶,鉴定出 23 个 YfiQ 依赖性和 315 个 CobB 依赖性乙酰化蛋白。进一步的结果表明,SlyA 蛋白赖氨酸 73 位的乙酰化抑制了它与目标基因启动子的结合,包括编码负责合成 c-di-GMP 的二鸟苷酸环化酶的基因,从而显著增强了鼠疫耶尔森菌生物膜的形成。我们的研究提供了鼠疫耶尔森菌的第一张广泛的乙酰组数据,这是该病原体中赖氨酸乙酰化功能研究的重要资源。鼠疫耶尔森菌是鼠疫的病原体,历史上曾引发过三次全球大流行。2017 年马达加斯加的鼠疫疫情提醒人们,鼠疫耶尔森菌在世界许多地区仍然是一个真正的威胁。鼠疫是一种人畜共患疾病,主要通过跳蚤叮咬感染啮齿动物,感染跳蚤向哺乳动物传播鼠疫耶尔森菌需要快速适应不利的宿主环境以建立感染。我们的研究提供了鼠疫耶尔森菌中基于质谱分析的赖氨酸乙酰化的首次全球分析。我们的数据集可以作为鼠疫耶尔森菌中赖氨酸乙酰化功能研究的重要资源,并为蛋白质中赖氨酸乙酰化的生理作用提供新的分子见解。更重要的是,我们发现 SlyA 的赖氨酸 73 位的乙酰化显著促进了鼠疫耶尔森菌生物膜的形成,这表明细菌可以利用赖氨酸乙酰化来微调基因的表达,以提高适应性。