Suppr超能文献

使用组合方法增强层次时间序列方法的预测准确性。

Enhancing forecast accuracy using combination methods for the hierarchical time series approach.

机构信息

Department of Statistics, Mathematics, and Insurance, Faculty of Commerce, Port Said University, Port Fouad, Port Said, Egypt.

出版信息

PLoS One. 2023 Jul 17;18(7):e0287897. doi: 10.1371/journal.pone.0287897. eCollection 2023.

Abstract

This study aims to investigate whether combining forecasts generated from different models can improve forecast accuracy rather than individual models using the hierarchical time series. Various approaches of hierarchical forecasting have been considered; a bottom-up, top-down, and an optimal combination approach. Autoregressive moving averages (ARIMA) and exponential smoothing (ETS) were used as forecasting models in creating forecasting for all levels in the hierarchy to show the effect of different forecasting methods for each hierarchical model. The results indicated that the Minimum Trace Sample estimator (MinT-Sample) and the bottom-up approaches with the ARIMA model have good predictive performance than other approaches. Moreover, the forecasts from the MinT-Sample and bottom-up approaches were combined using five different combining methods. The experimental results showed that the (AC) method is superior to all other combining methods and more accurate than other individual models at level zero (international total trade in Egypt) and level one (total exports, and total imports). So, combining forecasts generated from different models by hierarchical time series leads to more accurate forecasting of the value of imports and exports which will improve the overall international trade performance, and that is through using the forecasting values of imports and exports to plan for improving the trade balance and drawing up a more efficient production policy. Finally, the study recommends using hierarchical forecasting methods in the areas of international trade, and the Ministry of Commerce and Industry could adopt the results of this study to produce precise forecasts for international trade. Moreover, the results of this study are to be a guide for the researchers to apply these approaches in other fields to improve the performance of forecasting.

摘要

本研究旨在探讨通过层次时间序列组合来自不同模型的预测是否可以提高预测准确性,而不是使用单个模型。已经考虑了各种层次预测方法;自回归移动平均 (ARIMA) 和指数平滑 (ETS) 被用作在层次结构的所有级别创建预测的预测模型,以展示不同层次模型的不同预测方法的效果。结果表明,最小迹样本估计器 (MinT-Sample) 和具有 ARIMA 模型的自下而上方法比其他方法具有更好的预测性能。此外,使用五种不同的组合方法对 MinT-Sample 和自下而上方法的预测进行了组合。实验结果表明,(AC) 方法优于所有其他组合方法,并且在零级(埃及国际总贸易)和一级(总出口和总进口)的个别模型更准确。因此,通过层次时间序列组合来自不同模型的预测可以更准确地预测进出口值,从而提高整体国际贸易绩效,这是通过使用进出口预测值来计划改善贸易平衡并制定更有效的生产政策。最后,本研究建议在国际贸易领域使用层次预测方法,商务部可以采用本研究的结果,为国际贸易生成精确的预测。此外,本研究的结果可以为研究人员在其他领域应用这些方法提供指导,以提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c63/10351743/fa38e4afc3d9/pone.0287897.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验