Suppr超能文献

评估分层预测方法在零售行业的性能。

Assessing the Performance of Hierarchical Forecasting Methods on the Retail Sector.

作者信息

Oliveira José Manuel, Ramos Patrícia

机构信息

INESC Technology and Science, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

Faculty of Economics, University of Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal.

出版信息

Entropy (Basel). 2019 Apr 24;21(4):436. doi: 10.3390/e21040436.

Abstract

Retailers need demand forecasts at different levels of aggregation in order to support a variety of decisions along the supply chain. To ensure aligned decision-making across the hierarchy, it is essential that forecasts at the most disaggregated level add up to forecasts at the aggregate levels above. It is not clear if these aggregate forecasts should be generated independently or by using an hierarchical forecasting method that ensures coherent decision-making at the different levels but does not guarantee, at least, the same accuracy. To give guidelines on this issue, our empirical study investigates the relative performance of independent and reconciled forecasting approaches, using real data from a Portuguese retailer. We consider two alternative forecasting model families for generating the base forecasts; namely, state space models and ARIMA. Appropriate models from both families are chosen for each time-series by minimising the bias-corrected Akaike information criteria. The results show significant improvements in forecast accuracy, providing valuable information to support management decisions. It is clear that reconciled forecasts using the Minimum Trace Shrinkage estimator (MinT-Shrink) generally improve on the accuracy of the ARIMA base forecasts for all levels and for the complete hierarchy, across all forecast horizons. The accuracy gains generally increase with the horizon, varying between 1.7% and 3.7% for the complete hierarchy. It is also evident that the gains in forecast accuracy are more substantial at the higher levels of aggregation, which means that the information about the individual dynamics of the series, which was lost due to aggregation, is brought back again from the lower levels of aggregation to the higher levels by the reconciliation process, substantially improving the forecast accuracy over the base forecasts.

摘要

零售商需要不同聚合层次的需求预测,以支持供应链中的各种决策。为确保整个层级的决策一致,至关重要的是,最细分层面的预测要汇总为高于其的汇总层面的预测。目前尚不清楚这些汇总预测是应独立生成,还是采用一种层级预测方法来生成,该方法能确保不同层面的决策连贯,但至少不能保证相同的准确性。为就此问题提供指导方针,我们的实证研究使用一家葡萄牙零售商的真实数据,调查了独立预测方法和协调预测方法的相对性能。我们考虑了两个备选预测模型族来生成基础预测;即状态空间模型和自回归积分移动平均模型(ARIMA)。通过最小化偏差校正后的赤池信息准则,为每个时间序列从这两个模型族中选择合适的模型。结果表明预测准确性有显著提高,为支持管理决策提供了有价值的信息。显然,使用最小迹收缩估计器(MinT-Shrink)的协调预测通常在所有层面以及整个层级上,对所有预测期都能提高ARIMA基础预测的准确性。准确性提升通常会随着预测期的延长而增加,整个层级的提升幅度在1.7%至3.7%之间。同样明显的是,在较高聚合层面,预测准确性的提升更为显著,这意味着因聚合而丢失的关于序列个体动态的信息,通过协调过程从较低聚合层面再次带回较高聚合层面,从而大幅提高了相对于基础预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5312/7514926/0622f0e05e15/entropy-21-00436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验