Suppr超能文献

琼脂糖基 3D 细胞限制分析用于研究核机械生物学。

Agarose-based 3D Cell Confinement Assay to Study Nuclear Mechanobiology.

机构信息

Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York.

出版信息

Curr Protoc. 2023 Jul;3(7):e847. doi: 10.1002/cpz1.847.

Abstract

Cells in living tissues are exposed to substantial mechanical forces and constraints imposed by neighboring cells, the extracellular matrix, and external factors. Mechanical forces and physical confinement can drive various cellular responses, including changes in gene expression, cell growth, differentiation, and migration, all of which have important implications in physiological and pathological processes, such as immune cell migration or cancer metastasis. Previous studies have shown that nuclear deformation induced by 3D confinement promotes cell contractility but can also cause DNA damage and changes in chromatin organization, thereby motivating further studies in nuclear mechanobiology. In this protocol, we present a custom-developed, easy-to-use, robust, and low-cost approach to induce precisely defined physical confinement on cells using agarose pads with micropillars and externally applied weights. We validated the device by confirming nuclear deformation, changes in nuclear area, and cell viability after confinement. The device is suitable for short- and long-term confinement studies and compatible with imaging of both live and fixed samples, thus presenting a versatile approach to studying the impact of 3D cell confinement and nuclear deformation on cellular function. This article contains detailed protocols for the fabrication and use of the confinement device, including live cell imaging and labeling of fixed cells for subsequent analysis. These protocols can be amended for specific applications. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Design and fabrication of the confinement device wafer Basic Protocol 2: Cell confinement assay Support Protocol 1: Fixation and staining of cells after confinement Support protocol 2: Live/dead staining of cells during confinement.

摘要

活组织中的细胞会受到来自邻近细胞、细胞外基质和外部因素的大量机械力和约束。机械力和物理约束可以驱动各种细胞反应,包括基因表达、细胞生长、分化和迁移的变化,所有这些都对生理和病理过程有重要影响,如免疫细胞迁移或癌症转移。先前的研究表明,三维限制引起的核变形会促进细胞收缩力,但也会导致 DNA 损伤和染色质组织的变化,从而激发了核机械生物学的进一步研究。在本方案中,我们提出了一种定制的、易于使用的、稳健的、低成本的方法,使用带有微柱的琼脂糖垫和外部施加的重量对细胞施加精确定义的物理限制。我们通过确认限制后核变形、核面积变化和细胞活力来验证该设备。该设备适用于短期和长期限制研究,并且与活细胞和固定样本的成像兼容,因此提供了一种研究 3D 细胞限制和核变形对细胞功能影响的通用方法。本文包含了用于限制设备的制造和使用的详细方案,包括活细胞成像和固定细胞的标记,以便后续分析。这些方案可以根据特定的应用进行修改。© 2023 威立出版社。基本方案 1:限制设备晶片的设计和制造基本方案 2:细胞限制测定支持方案 1:限制后细胞的固定和染色支持方案 2:限制过程中细胞的死活染色。

相似文献

5
Integration of Mesenchymal Stem Cells into a Novel Micropillar Confinement Assay.间质干细胞在新型微柱约束分析中的整合。
Tissue Eng Part C Methods. 2019 Nov;25(11):662-676. doi: 10.1089/ten.TEC.2019.0083. Epub 2019 Sep 11.
9
Physical confinement alters sarcoma cell cycle progression and division.身体限制会改变肉瘤细胞的周期进程和分裂。
Cell Cycle. 2018;17(19-20):2360-2373. doi: 10.1080/15384101.2018.1533776. Epub 2018 Oct 20.

本文引用的文献

1
Extended Methods for 2D Confinement.二维限制的扩展方法。
Methods Mol Biol. 2023;2608:63-81. doi: 10.1007/978-1-0716-2887-4_5.
3
Mechanics and functional consequences of nuclear deformations.核变形的力学和功能后果。
Nat Rev Mol Cell Biol. 2022 Sep;23(9):583-602. doi: 10.1038/s41580-022-00480-z. Epub 2022 May 5.
7
Nuclear Deformation Causes DNA Damage by Increasing Replication Stress.核变形通过增加复制应激导致 DNA 损伤。
Curr Biol. 2021 Feb 22;31(4):753-765.e6. doi: 10.1016/j.cub.2020.11.037. Epub 2020 Dec 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验