Sánchez Arribas Irene, Taniguchi Takashi, Watanabe Kenji, Weig Eva M
Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany.
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
Nano Lett. 2023 Jul 26;23(14):6301-6307. doi: 10.1021/acs.nanolett.3c00544. Epub 2023 Jul 17.
Hexagonal boron nitride (hBN) is a van der Waals material with excellent mechanical properties hosting quantum emitters and optically active spin defects, with several of them being sensitive to strain. Establishing optomechanical control of hBN will enable hybrid quantum devices that combine the spin degree of freedom with the cavity optomechanical toolbox. In this Letter, we report the first observation of radiation pressure backaction at telecom wavelengths with a hBN drum-head mechanical resonator. The thermomechanical motion of the resonator is coupled to the optical mode of a high finesse fiber-based Fabry-Pérot microcavity in a membrane-in-the-middle configuration. We are able to resolve the optical spring effect and optomechanical damping with a single photon coupling strength of /2π = 1200 Hz. Our results pave the way for tailoring the mechanical properties of hBN resonators with light.
六方氮化硼(hBN)是一种范德华材料,具有优异的机械性能,其中存在量子发射器和光学活性自旋缺陷,且其中一些对应变敏感。建立对hBN的光机械控制将实现结合自旋自由度与腔光机械工具箱的混合量子器件。在本信函中,我们报告了首次利用hBN鼓面机械谐振器在电信波长下观测到辐射压力反作用。谐振器的热机械运动通过中间膜配置与基于高精细度光纤的法布里 - 珀罗微腔的光学模式耦合。我们能够以单光子耦合强度ħ/2π = 1200 Hz分辨出光学弹簧效应和光机械阻尼。我们的结果为用光来定制hBN谐振器的机械性能铺平了道路。