Margot Florian, Lisi Simone, Cucchi Irène, Cappelli Edoardo, Hunter Andrew, Gutiérrez-Lezama Ignacio, Ma KeYuan, von Rohr Fabian, Berthod Christophe, Petocchi Francesco, Poncé Samuel, Marzari Nicola, Gibertini Marco, Tamai Anna, Morpurgo Alberto F, Baumberger Felix
Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland.
Group of Applied Physics, University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland.
Nano Lett. 2023 Jul 26;23(14):6433-6439. doi: 10.1021/acs.nanolett.3c01226. Epub 2023 Jul 17.
Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (μ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.
黑磷(BP)在二维(2D)半导体中脱颖而出,因其具有高迁移率和与厚度相关的直接带隙。然而,迄今为止,超薄BP的准粒子能带结构仍无法通过实验获得。在此,我们使用最近开发的基于激光的微聚焦角分辨光电子能谱(μ-ARPES)系统,从实验上确定2至9层BP的电子结构。我们的测量揭示了在与传统半导体量子阱中观察到的标度不同的能量处存在各向异性的、量子化的子带阶梯。我们量化了有效质量的各向异性,并确定了通用的紧束缚参数,这些参数为所有厚度的电子结构提供了准确描述。