Suppr超能文献

基于双光子飞秒激光直写技术制备的光控多关节微致动器

Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing.

机构信息

Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China.

出版信息

Nat Commun. 2023 Jul 17;14(1):4273. doi: 10.1038/s41467-023-40038-x.

Abstract

Inspired by the flexible joints of humans, actuators containing soft joints have been developed for various applications, including soft grippers, artificial muscles, and wearable devices. However, integrating multiple microjoints into soft robots at the micrometer scale to achieve multi-deformation modalities remains challenging. Here, we propose a two-in-one femtosecond laser writing strategy to fabricate microjoints composed of hydrogel and metal nanoparticles, and develop multi-joint microactuators with multi-deformation modalities (>10), requiring short response time (30 ms) and low actuation power (<10 mW) to achieve deformation. Besides, independent joint deformation control and linkage of multi-joint deformation, including co-planar and spatial linkage, enables the microactuator to reconstruct a variety of complex human-like modalities. Finally, as a proof of concept, the collection of multiple microcargos at different locations is achieved by a double-joint micro robotic arm. Our microactuators with multiple modalities will bring many potential application opportunities in microcargo collection, microfluid operation, and cell manipulation.

摘要

受人类灵活关节的启发,已经开发出了包含软关节的致动器,用于各种应用,包括软夹持器、人工肌肉和可穿戴设备。然而,要在微尺度上将多个微关节集成到软机器人中以实现多种变形模式仍然具有挑战性。在这里,我们提出了一种二合一的飞秒激光写入策略,用于制造由水凝胶和金属纳米粒子组成的微关节,并开发出具有多种变形模式(>10 种)的多关节微致动器,需要短的响应时间(30ms)和低的致动功率(<10mW)来实现变形。此外,独立的关节变形控制和多关节变形的联动,包括共面和空间联动,使微致动器能够重建各种复杂的类似人类的模式。最后,作为概念验证,通过双关节微机械臂实现了对不同位置的多个微货物的收集。我们具有多种模式的微致动器将在微货物收集、微流操作和细胞操作等方面带来许多潜在的应用机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d086/10352372/6d8964077cbe/41467_2023_40038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验