Suppr超能文献

阐明可成药蛋白质组中的信息学挑战与进展。

Informatic challenges and advances in illuminating the druggable proteome.

作者信息

Taujale Rahil, Gravel Nathan, Zhou Zhongliang, Yeung Wayland, Kochut Krystof, Kannan Natarajan

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.

Institute of Bioinformatics, University of Georgia, Athens, GA, USA.

出版信息

Drug Discov Today. 2024 Mar;29(3):103894. doi: 10.1016/j.drudis.2024.103894. Epub 2024 Jan 22.

Abstract

The understudied members of the druggable proteomes offer promising prospects for drug discovery efforts. While large-scale initiatives have generated valuable functional information on understudied members of the druggable gene families, translating this information into actionable knowledge for drug discovery requires specialized informatics tools and resources. Here, we review the unique informatics challenges and advances in annotating understudied members of the druggable proteome. We demonstrate the application of statistical evolutionary inference tools, knowledge graph mining approaches, and protein language models in illuminating understudied protein kinases, pseudokinases, and ion channels.

摘要

可成药蛋白质组中研究较少的成员为药物研发工作提供了广阔前景。虽然大规模项目已产生了关于可成药基因家族中研究较少成员的有价值的功能信息,但将这些信息转化为可用于药物研发的实际知识需要专门的信息学工具和资源。在此,我们综述了注释可成药蛋白质组中研究较少成员时所面临的独特信息学挑战及进展。我们展示了统计进化推理工具、知识图谱挖掘方法和蛋白质语言模型在阐明研究较少的蛋白激酶、假激酶和离子通道方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf1b/12285681/113dd9847b97/nihms-2095370-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验