Suppr超能文献

精子染色质结构和生殖能力因在鼠组蛋白 1 中替换单个氨基酸而改变。

Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1.

机构信息

Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.

Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nat Struct Mol Biol. 2023 Aug;30(8):1077-1091. doi: 10.1038/s41594-023-01033-4. Epub 2023 Jul 17.

Abstract

Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.

摘要

传统观点认为,鱼精蛋白介导的精子 DNA 紧缩是通过 DNA 与鱼精蛋白富含精氨酸的核心之间的静电相互作用实现的。系统发育分析显示,在种内而非种间存在几个保守的非精氨酸残基。这些残基及其翻译后修饰的意义还知之甚少。在这里,我们研究了 K49 的作用,K49 是一种在精子发生早期乙酰化并在精子中保留的啮齿动物特异性赖氨酸残基,存在于鱼精蛋白 1 (P1) 中。在精子中,丙氨酸取代(P1(K49A))会降低精子的运动能力和雄性生育能力缺陷,但精氨酸取代(P1(K49R))不能挽救这种缺陷。在受精卵中,P1(K49A) 导致雄性原核过早解紧缩、DNA 复制改变和胚胎停滞。在体外,P1(K49A) 降低了鱼精蛋白与 DNA 的结合,并改变了 DNA 的紧缩和解紧缩动力学。因此,在精氨酸核心之外的单个氨基酸取代足以显著改变蛋白质功能和发育结果,这表明鱼精蛋白的非精氨酸残基对于生殖适应性是必不可少的。

相似文献

1
Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1.
Nat Struct Mol Biol. 2023 Aug;30(8):1077-1091. doi: 10.1038/s41594-023-01033-4. Epub 2023 Jul 17.
3
The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange.
Front Endocrinol (Lausanne). 2022 Jun 22;13:895502. doi: 10.3389/fendo.2022.895502. eCollection 2022.
5
SPAG17 mediates nuclear translocation of protamines during spermiogenesis.
Front Cell Dev Biol. 2023 Sep 12;11:1125096. doi: 10.3389/fcell.2023.1125096. eCollection 2023.
6
A subset of evolutionarily conserved centriolar satellite core components is crucial for sperm flagellum biogenesis.
Theranostics. 2025 Jun 12;15(14):7025-7044. doi: 10.7150/thno.117118. eCollection 2025.
7
Protamines and the sperm nuclear basic proteins Pandora's Box of insects.
Biochem Cell Biol. 2024 Jun 1;102(3):238-251. doi: 10.1139/bcb-2023-0363. Epub 2024 Feb 26.
8
Proteomic analysis of human sperm reveals changes in protamine 1 phosphorylation in men with infertility.
F S Sci. 2024 May;5(2):121-129. doi: 10.1016/j.xfss.2023.12.002. Epub 2023 Dec 7.
9
Female factors modulate Sex Peptide's association with sperm in Drosophila melanogaster.
BMC Biol. 2022 Dec 14;20(1):279. doi: 10.1186/s12915-022-01465-2.

引用本文的文献

1
Rapid protamine evolution suppresses meiotic drive in .
bioRxiv. 2025 Sep 5:2025.09.03.674087. doi: 10.1101/2025.09.03.674087.
2
Maternal CENP-C restores centromere symmetry in mammalian zygotes to ensure proper chromosome segregation.
bioRxiv. 2025 Jul 28:2025.07.23.666394. doi: 10.1101/2025.07.23.666394.
3
Protamine sequence determines species-specific nuclear shape and histone retention.
iScience. 2025 Jul 12;28(8):113102. doi: 10.1016/j.isci.2025.113102. eCollection 2025 Aug 15.
4
Male germ cells with Bag5 deficiency show reduced spermiogenesis and exchange of basic nuclear proteins.
Cell Mol Life Sci. 2025 Feb 24;82(1):92. doi: 10.1007/s00018-025-05591-2.
6
Constitutive Androstane Receptor Regulates Germ Cell Homeostasis, Sperm Quality, and Male Fertility via Akt-Foxo1 Pathway.
Adv Sci (Weinh). 2024 Nov;11(43):e2402082. doi: 10.1002/advs.202402082. Epub 2024 Sep 24.
7
Multifaceted paternal exposures before conception and their epigenetic impact on offspring.
J Assist Reprod Genet. 2024 Nov;41(11):2931-2951. doi: 10.1007/s10815-024-03243-1. Epub 2024 Sep 4.
9
Running the gauntlet: challenges to genome integrity in spermiogenesis.
Nucleus. 2024 Dec;15(1):2339220. doi: 10.1080/19491034.2024.2339220. Epub 2024 Apr 9.
10
Proteomic analysis of human sperm reveals changes in protamine 1 phosphorylation in men with infertility.
F S Sci. 2024 May;5(2):121-129. doi: 10.1016/j.xfss.2023.12.002. Epub 2023 Dec 7.

本文引用的文献

1
Replication stress impairs chromosome segregation and preimplantation development in human embryos.
Cell. 2022 Aug 4;185(16):2988-3007.e20. doi: 10.1016/j.cell.2022.06.028. Epub 2022 Jul 19.
2
Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice.
PLoS Genet. 2022 Jun 28;18(6):e1010272. doi: 10.1371/journal.pgen.1010272. eCollection 2022 Jun.
5
DNA replication fork speed underlies cell fate changes and promotes reprogramming.
Nat Genet. 2022 Mar;54(3):318-327. doi: 10.1038/s41588-022-01023-0. Epub 2022 Mar 7.
6
p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models.
Nat Genet. 2021 Aug;53(8):1207-1220. doi: 10.1038/s41588-021-00893-0. Epub 2021 Jul 15.
7
RNF8 is not required for histone-to-protamine exchange in spermiogenesis†.
Biol Reprod. 2021 Nov 15;105(5):1154-1159. doi: 10.1093/biolre/ioab132.
8
Initiation of Parental Genome Reprogramming in Fertilized Oocyte by Splicing Kinase SRPK1-Catalyzed Protamine Phosphorylation.
Cell. 2020 Mar 19;180(6):1212-1227.e14. doi: 10.1016/j.cell.2020.02.020. Epub 2020 Mar 12.
9
DUX is a non-essential synchronizer of zygotic genome activation.
Development. 2020 Jan 23;147(2):dev177725. doi: 10.1242/dev.177725.
10
Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis.
Dev Cell. 2019 Dec 16;51(6):745-758.e6. doi: 10.1016/j.devcel.2019.10.024. Epub 2019 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验