Suppr超能文献

分子对哺乳动物发育中初始卵裂分裂时胚胎非整倍体和核型复杂性的贡献。

Molecular contribution to embryonic aneuploidy and karyotypic complexity in initial cleavage divisions of mammalian development.

机构信息

Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.

Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.

出版信息

Development. 2022 Apr 1;149(7). doi: 10.1242/dev.198341. Epub 2022 Apr 14.

Abstract

Embryonic aneuploidy is highly complex, often leading to developmental arrest, implantation failure or spontaneous miscarriage in both natural and assisted reproduction. Despite our knowledge of mitotic mis-segregation in somatic cells, the molecular pathways regulating chromosome fidelity during the error-prone cleavage-stage of mammalian embryogenesis remain largely undefined. Using bovine embryos and live-cell fluorescent imaging, we observed frequent micro-/multi-nucleation of mis-segregated chromosomes in initial mitotic divisions that underwent unilateral inheritance, re-fused with the primary nucleus or formed a chromatin bridge with neighboring cells. A correlation between a lack of syngamy, multipolar divisions and asymmetric genome partitioning was also revealed, and single-cell DNA-seq showed propagation of primarily non-reciprocal mitotic errors. Depletion of the mitotic checkpoint protein BUB1B (also known as BUBR1) resulted in similarly abnormal nuclear structures and cell divisions, as well as chaotic aneuploidy and dysregulation of the kinase-substrate network that mediates mitotic progression, all before zygotic genome activation. This demonstrates that embryonic micronuclei sustain multiple fates, provides an explanation for blastomeres with uniparental origins, and substantiates defective checkpoints and likely other maternally derived factors as major contributors to the karyotypic complexity afflicting mammalian preimplantation development.

摘要

胚胎非整倍体高度复杂,常导致自然和辅助生殖中胚胎发育停滞、着床失败或自然流产。尽管我们了解体细胞有丝分裂错误分离,但在哺乳动物胚胎发生易出错的卵裂期,调节染色体保真度的分子途径在很大程度上仍未确定。使用牛胚胎和活细胞荧光成像,我们观察到在经历单侧遗传、与主核重新融合或与邻近细胞形成染色质桥的初始有丝分裂分裂中,错误分离的染色体经常出现微/多核化。还揭示了缺乏合子形成、多极分裂和不对称基因组分配之间的相关性,单细胞 DNA 测序显示主要非相互有丝分裂错误的传播。有丝分裂检查点蛋白 BUB1B(也称为 BUBR1)的耗竭导致类似的异常核结构和细胞分裂,以及混乱的非整倍体和调节有丝分裂进程的激酶-底物网络的失调,所有这些都在合子基因组激活之前发生。这表明胚胎微核维持多种命运,为具有单亲起源的卵裂球提供了解释,并证实了有缺陷的检查点和可能的其他母源因子是导致哺乳动物植入前发育中核型复杂性的主要因素。

相似文献

2
Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development.
PLoS Genet. 2015 Oct 22;11(10):e1005601. doi: 10.1371/journal.pgen.1005601. eCollection 2015 Oct.
5
The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos.
Hum Reprod. 2017 Dec 1;32(12):2549-2560. doi: 10.1093/humrep/dex324.
8
Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development.
Front Cell Dev Biol. 2024 Feb 5;12:1344092. doi: 10.3389/fcell.2024.1344092. eCollection 2024.
10
Micronucleus formation during early cleavage division is a potential hallmark of preimplantation embryonic loss in cattle.
Biochem Biophys Res Commun. 2022 Aug 30;617(Pt 2):25-32. doi: 10.1016/j.bbrc.2022.05.075. Epub 2022 Jun 1.

引用本文的文献

1
Chromoanasynthesis.
Methods Mol Biol. 2025;2968:35-51. doi: 10.1007/978-1-0716-4750-9_2.
3
Origin and development of uniparental and polyploid blastomeres.
iScience. 2025 Apr 2;28(5):112337. doi: 10.1016/j.isci.2025.112337. eCollection 2025 May 16.
4
The chromosomal challenge of human embryos: Mechanisms and fundamentals.
HGG Adv. 2025 Apr 10;6(3):100437. doi: 10.1016/j.xhgg.2025.100437.
5
Chromosome segregation errors during early embryonic development.
Reprod Med Biol. 2025 Jan 22;24(1):e12631. doi: 10.1002/rmb2.12631. eCollection 2025 Jan-Dec.
7
Building the brain mosaic: an expanded view.
Trends Genet. 2024 Sep;40(9):747-756. doi: 10.1016/j.tig.2024.05.008. Epub 2024 Jun 8.
8
Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development.
J Assist Reprod Genet. 2024 May;41(5):1127-1141. doi: 10.1007/s10815-024-03048-2. Epub 2024 Feb 22.
9
Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development.
Front Cell Dev Biol. 2024 Feb 5;12:1344092. doi: 10.3389/fcell.2024.1344092. eCollection 2024.
10

本文引用的文献

1
Strengths and Weaknesses of Cell Synchronization Protocols Based on Inhibition of DNA Synthesis.
Int J Mol Sci. 2021 Oct 5;22(19):10759. doi: 10.3390/ijms221910759.
2
Dual spindles assemble in bovine zygotes despite the presence of paternal centrosomes.
J Cell Biol. 2021 Nov 1;220(11). doi: 10.1083/jcb.202010106. Epub 2021 Sep 22.
4
Parental genome unification is highly error-prone in mammalian embryos.
Cell. 2021 May 27;184(11):2860-2877.e22. doi: 10.1016/j.cell.2021.04.013. Epub 2021 May 7.
6
Annexin A2 acts as an adherent molecule under the regulation of steroids during embryo implantation.
Mol Hum Reprod. 2020 Nov 1;26(11):825-836. doi: 10.1093/molehr/gaaa065.
7
Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism.
Genome Res. 2020 Jun;30(6):814-825. doi: 10.1101/gr.262774.120. Epub 2020 Jul 8.
8
Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism.
Nat Commun. 2020 Jun 11;11(1):2958. doi: 10.1038/s41467-020-16796-3.
9
Sperm DNA damage causes genomic instability in early embryonic development.
Sci Adv. 2020 Apr 15;6(16):eaaz7602. doi: 10.1126/sciadv.aaz7602. eCollection 2020 Apr.
10
Mysteries in embryonic development: How can errors arise so frequently at the beginning of mammalian life?
PLoS Biol. 2019 Mar 6;17(3):e3000173. doi: 10.1371/journal.pbio.3000173. eCollection 2019 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验