Yin Rui, Pierce Brian G
University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
bioRxiv. 2023 Jul 21:2023.07.05.547832. doi: 10.1101/2023.07.05.547832.
High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody-antigen modeling performance on 429 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. We show the importance of bound-like component modeling in complex assembly accuracy, and that the current version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training may further improve its performance.
高分辨率抗体-抗原结构为免疫识别提供了关键见解,并可为治疗设计提供参考。实验性结构测定的挑战以及免疫库的多样性凸显了用于构建抗体-抗原复合物模型的精确计算工具的必要性。初步基准测试表明,尽管在构建蛋白质-蛋白质复合物模型方面总体取得了成功,但AlphaFold和AlphaFold-Multimer在构建抗体-抗原相互作用模型方面的成功率有限。在本研究中,我们对AlphaFold在429个非冗余抗体-抗原复合物结构上的抗体-抗原建模性能进行了全面分析,确定了用于预测模型质量的有用置信度指标,以及与建模成功率提高相关的复合物特征。我们展示了类似结合状态的组分建模在复合物组装准确性中的重要性,并且当前版本的AlphaFold将接近天然状态的建模成功率提高到了30%以上,而之前版本约为20%。凭借这一提高的成功率,AlphaFold在许多情况下可以生成准确的抗体-抗原模型,而进一步的训练可能会进一步提高其性能。